mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-19 05:25:54 +00:00
300 lines
14 KiB
Python
300 lines
14 KiB
Python
import os
|
|
import numpy as np
|
|
|
|
from gym import utils, error
|
|
from gym.envs.robotics import rotations, hand_env
|
|
from gym.envs.robotics.utils import robot_get_obs
|
|
|
|
try:
|
|
import mujoco_py
|
|
except ImportError as e:
|
|
raise error.DependencyNotInstalled("{}. (HINT: you need to install mujoco_py, and also perform the setup instructions here: https://github.com/openai/mujoco-py/.)".format(e))
|
|
|
|
|
|
def quat_from_angle_and_axis(angle, axis):
|
|
assert axis.shape == (3,)
|
|
axis /= np.linalg.norm(axis)
|
|
quat = np.concatenate([[np.cos(angle / 2.)], np.sin(angle / 2.) * axis])
|
|
quat /= np.linalg.norm(quat)
|
|
return quat
|
|
|
|
|
|
# Ensure we get the path separator correct on windows
|
|
MANIPULATE_BLOCK_XML = os.path.join('hand', 'manipulate_block.xml')
|
|
MANIPULATE_EGG_XML = os.path.join('hand', 'manipulate_egg.xml')
|
|
MANIPULATE_PEN_XML = os.path.join('hand', 'manipulate_pen.xml')
|
|
|
|
|
|
class ManipulateEnv(hand_env.HandEnv, utils.EzPickle):
|
|
def __init__(
|
|
self, model_path, target_position, target_rotation,
|
|
target_position_range, reward_type, initial_qpos={},
|
|
randomize_initial_position=True, randomize_initial_rotation=True,
|
|
distance_threshold=0.01, rotation_threshold=0.1, n_substeps=20, relative_control=False,
|
|
ignore_z_target_rotation=False,
|
|
):
|
|
"""Initializes a new Hand manipulation environment.
|
|
|
|
Args:
|
|
model_path (string): path to the environments XML file
|
|
target_position (string): the type of target position:
|
|
- ignore: target position is fully ignored, i.e. the object can be positioned arbitrarily
|
|
- fixed: target position is set to the initial position of the object
|
|
- random: target position is fully randomized according to target_position_range
|
|
target_rotation (string): the type of target rotation:
|
|
- ignore: target rotation is fully ignored, i.e. the object can be rotated arbitrarily
|
|
- fixed: target rotation is set to the initial rotation of the object
|
|
- xyz: fully randomized target rotation around the X, Y and Z axis
|
|
- z: fully randomized target rotation around the Z axis
|
|
- parallel: fully randomized target rotation around Z and axis-aligned rotation around X, Y
|
|
ignore_z_target_rotation (boolean): whether or not the Z axis of the target rotation is ignored
|
|
target_position_range (np.array of shape (3, 2)): range of the target_position randomization
|
|
reward_type ('sparse' or 'dense'): the reward type, i.e. sparse or dense
|
|
initial_qpos (dict): a dictionary of joint names and values that define the initial configuration
|
|
randomize_initial_position (boolean): whether or not to randomize the initial position of the object
|
|
randomize_initial_rotation (boolean): whether or not to randomize the initial rotation of the object
|
|
distance_threshold (float, in meters): the threshold after which the position of a goal is considered achieved
|
|
rotation_threshold (float, in radians): the threshold after which the rotation of a goal is considered achieved
|
|
n_substeps (int): number of substeps the simulation runs on every call to step
|
|
relative_control (boolean): whether or not the hand is actuated in absolute joint positions or relative to the current state
|
|
"""
|
|
self.target_position = target_position
|
|
self.target_rotation = target_rotation
|
|
self.target_position_range = target_position_range
|
|
self.parallel_quats = [rotations.euler2quat(r) for r in rotations.get_parallel_rotations()]
|
|
self.randomize_initial_rotation = randomize_initial_rotation
|
|
self.randomize_initial_position = randomize_initial_position
|
|
self.distance_threshold = distance_threshold
|
|
self.rotation_threshold = rotation_threshold
|
|
self.reward_type = reward_type
|
|
self.ignore_z_target_rotation = ignore_z_target_rotation
|
|
|
|
assert self.target_position in ['ignore', 'fixed', 'random']
|
|
assert self.target_rotation in ['ignore', 'fixed', 'xyz', 'z', 'parallel']
|
|
|
|
hand_env.HandEnv.__init__(
|
|
self, model_path, n_substeps=n_substeps, initial_qpos=initial_qpos,
|
|
relative_control=relative_control)
|
|
utils.EzPickle.__init__(self)
|
|
|
|
def _get_achieved_goal(self):
|
|
# Object position and rotation.
|
|
object_qpos = self.sim.data.get_joint_qpos('object:joint')
|
|
assert object_qpos.shape == (7,)
|
|
return object_qpos
|
|
|
|
def _goal_distance(self, goal_a, goal_b):
|
|
assert goal_a.shape == goal_b.shape
|
|
assert goal_a.shape[-1] == 7
|
|
|
|
d_pos = np.zeros_like(goal_a[..., 0])
|
|
d_rot = np.zeros_like(goal_b[..., 0])
|
|
if self.target_position != 'ignore':
|
|
delta_pos = goal_a[..., :3] - goal_b[..., :3]
|
|
d_pos = np.linalg.norm(delta_pos, axis=-1)
|
|
|
|
if self.target_rotation != 'ignore':
|
|
quat_a, quat_b = goal_a[..., 3:], goal_b[..., 3:]
|
|
|
|
if self.ignore_z_target_rotation:
|
|
# Special case: We want to ignore the Z component of the rotation.
|
|
# This code here assumes Euler angles with xyz convention. We first transform
|
|
# to euler, then set the Z component to be equal between the two, and finally
|
|
# transform back into quaternions.
|
|
euler_a = rotations.quat2euler(quat_a)
|
|
euler_b = rotations.quat2euler(quat_b)
|
|
euler_a[2] = euler_b[2]
|
|
quat_a = rotations.euler2quat(euler_a)
|
|
|
|
# Subtract quaternions and extract angle between them.
|
|
quat_diff = rotations.quat_mul(quat_a, rotations.quat_conjugate(quat_b))
|
|
angle_diff = 2 * np.arccos(np.clip(quat_diff[..., 0], -1., 1.))
|
|
d_rot = angle_diff
|
|
assert d_pos.shape == d_rot.shape
|
|
return d_pos, d_rot
|
|
|
|
# GoalEnv methods
|
|
# ----------------------------
|
|
|
|
def compute_reward(self, achieved_goal, goal, info):
|
|
if self.reward_type == 'sparse':
|
|
success = self._is_success(achieved_goal, goal).astype(np.float32)
|
|
return (success - 1.)
|
|
else:
|
|
d_pos, d_rot = self._goal_distance(achieved_goal, goal)
|
|
# We weigh the difference in position to avoid that `d_pos` (in meters) is completely
|
|
# dominated by `d_rot` (in radians).
|
|
return -(10. * d_pos + d_rot)
|
|
|
|
# RobotEnv methods
|
|
# ----------------------------
|
|
|
|
def _is_success(self, achieved_goal, desired_goal):
|
|
d_pos, d_rot = self._goal_distance(achieved_goal, desired_goal)
|
|
achieved_pos = (d_pos < self.distance_threshold).astype(np.float32)
|
|
achieved_rot = (d_rot < self.rotation_threshold).astype(np.float32)
|
|
achieved_both = achieved_pos * achieved_rot
|
|
return achieved_both
|
|
|
|
def _env_setup(self, initial_qpos):
|
|
for name, value in initial_qpos.items():
|
|
self.sim.data.set_joint_qpos(name, value)
|
|
self.sim.forward()
|
|
|
|
def _reset_sim(self):
|
|
self.sim.set_state(self.initial_state)
|
|
self.sim.forward()
|
|
|
|
initial_qpos = self.sim.data.get_joint_qpos('object:joint').copy()
|
|
initial_pos, initial_quat = initial_qpos[:3], initial_qpos[3:]
|
|
assert initial_qpos.shape == (7,)
|
|
assert initial_pos.shape == (3,)
|
|
assert initial_quat.shape == (4,)
|
|
initial_qpos = None
|
|
|
|
# Randomization initial rotation.
|
|
if self.randomize_initial_rotation:
|
|
if self.target_rotation == 'z':
|
|
angle = self.np_random.uniform(-np.pi, np.pi)
|
|
axis = np.array([0., 0., 1.])
|
|
offset_quat = quat_from_angle_and_axis(angle, axis)
|
|
initial_quat = rotations.quat_mul(initial_quat, offset_quat)
|
|
elif self.target_rotation == 'parallel':
|
|
angle = self.np_random.uniform(-np.pi, np.pi)
|
|
axis = np.array([0., 0., 1.])
|
|
z_quat = quat_from_angle_and_axis(angle, axis)
|
|
parallel_quat = self.parallel_quats[self.np_random.randint(len(self.parallel_quats))]
|
|
offset_quat = rotations.quat_mul(z_quat, parallel_quat)
|
|
initial_quat = rotations.quat_mul(initial_quat, offset_quat)
|
|
elif self.target_rotation in ['xyz', 'ignore']:
|
|
angle = self.np_random.uniform(-np.pi, np.pi)
|
|
axis = self.np_random.uniform(-1., 1., size=3)
|
|
offset_quat = quat_from_angle_and_axis(angle, axis)
|
|
initial_quat = rotations.quat_mul(initial_quat, offset_quat)
|
|
elif self.target_rotation == 'fixed':
|
|
pass
|
|
else:
|
|
raise error.Error('Unknown target_rotation option "{}".'.format(self.target_rotation))
|
|
|
|
# Randomize initial position.
|
|
if self.randomize_initial_position:
|
|
if self.target_position != 'fixed':
|
|
initial_pos += self.np_random.normal(size=3, scale=0.005)
|
|
|
|
initial_quat /= np.linalg.norm(initial_quat)
|
|
initial_qpos = np.concatenate([initial_pos, initial_quat])
|
|
self.sim.data.set_joint_qpos('object:joint', initial_qpos)
|
|
|
|
def is_on_palm():
|
|
self.sim.forward()
|
|
cube_middle_idx = self.sim.model.site_name2id('object:center')
|
|
cube_middle_pos = self.sim.data.site_xpos[cube_middle_idx]
|
|
is_on_palm = (cube_middle_pos[2] > 0.04)
|
|
return is_on_palm
|
|
|
|
# Run the simulation for a bunch of timesteps to let everything settle in.
|
|
for _ in range(10):
|
|
self._set_action(np.zeros(20))
|
|
try:
|
|
self.sim.step()
|
|
except mujoco_py.MujocoException:
|
|
return False
|
|
return is_on_palm()
|
|
|
|
def _sample_goal(self):
|
|
# Select a goal for the object position.
|
|
target_pos = None
|
|
if self.target_position == 'random':
|
|
assert self.target_position_range.shape == (3, 2)
|
|
offset = self.np_random.uniform(self.target_position_range[:, 0], self.target_position_range[:, 1])
|
|
assert offset.shape == (3,)
|
|
target_pos = self.sim.data.get_joint_qpos('object:joint')[:3] + offset
|
|
elif self.target_position in ['ignore', 'fixed']:
|
|
target_pos = self.sim.data.get_joint_qpos('object:joint')[:3]
|
|
else:
|
|
raise error.Error('Unknown target_position option "{}".'.format(self.target_position))
|
|
assert target_pos is not None
|
|
assert target_pos.shape == (3,)
|
|
|
|
# Select a goal for the object rotation.
|
|
target_quat = None
|
|
if self.target_rotation == 'z':
|
|
angle = self.np_random.uniform(-np.pi, np.pi)
|
|
axis = np.array([0., 0., 1.])
|
|
target_quat = quat_from_angle_and_axis(angle, axis)
|
|
elif self.target_rotation == 'parallel':
|
|
angle = self.np_random.uniform(-np.pi, np.pi)
|
|
axis = np.array([0., 0., 1.])
|
|
target_quat = quat_from_angle_and_axis(angle, axis)
|
|
parallel_quat = self.parallel_quats[self.np_random.randint(len(self.parallel_quats))]
|
|
target_quat = rotations.quat_mul(target_quat, parallel_quat)
|
|
elif self.target_rotation == 'xyz':
|
|
angle = self.np_random.uniform(-np.pi, np.pi)
|
|
axis = self.np_random.uniform(-1., 1., size=3)
|
|
target_quat = quat_from_angle_and_axis(angle, axis)
|
|
elif self.target_rotation in ['ignore', 'fixed']:
|
|
target_quat = self.sim.data.get_joint_qpos('object:joint')
|
|
else:
|
|
raise error.Error('Unknown target_rotation option "{}".'.format(self.target_rotation))
|
|
assert target_quat is not None
|
|
assert target_quat.shape == (4,)
|
|
|
|
target_quat /= np.linalg.norm(target_quat) # normalized quaternion
|
|
goal = np.concatenate([target_pos, target_quat])
|
|
return goal
|
|
|
|
def _render_callback(self):
|
|
# Assign current state to target object but offset a bit so that the actual object
|
|
# is not obscured.
|
|
goal = self.goal.copy()
|
|
assert goal.shape == (7,)
|
|
if self.target_position == 'ignore':
|
|
# Move the object to the side since we do not care about it's position.
|
|
goal[0] += 0.15
|
|
self.sim.data.set_joint_qpos('target:joint', goal)
|
|
self.sim.data.set_joint_qvel('target:joint', np.zeros(6))
|
|
|
|
if 'object_hidden' in self.sim.model.geom_names:
|
|
hidden_id = self.sim.model.geom_name2id('object_hidden')
|
|
self.sim.model.geom_rgba[hidden_id, 3] = 1.
|
|
self.sim.forward()
|
|
|
|
def _get_obs(self):
|
|
robot_qpos, robot_qvel = robot_get_obs(self.sim)
|
|
object_qvel = self.sim.data.get_joint_qvel('object:joint')
|
|
achieved_goal = self._get_achieved_goal().ravel() # this contains the object position + rotation
|
|
observation = np.concatenate([robot_qpos, robot_qvel, object_qvel, achieved_goal])
|
|
return {
|
|
'observation': observation.copy(),
|
|
'achieved_goal': achieved_goal.copy(),
|
|
'desired_goal': self.goal.ravel().copy(),
|
|
}
|
|
|
|
|
|
class HandBlockEnv(ManipulateEnv):
|
|
def __init__(self, target_position='random', target_rotation='xyz', reward_type='sparse'):
|
|
super(HandBlockEnv, self).__init__(
|
|
model_path=MANIPULATE_BLOCK_XML, target_position=target_position,
|
|
target_rotation=target_rotation,
|
|
target_position_range=np.array([(-0.04, 0.04), (-0.06, 0.02), (0.0, 0.06)]),
|
|
reward_type=reward_type)
|
|
|
|
|
|
class HandEggEnv(ManipulateEnv):
|
|
def __init__(self, target_position='random', target_rotation='xyz', reward_type='sparse'):
|
|
super(HandEggEnv, self).__init__(
|
|
model_path=MANIPULATE_EGG_XML, target_position=target_position,
|
|
target_rotation=target_rotation,
|
|
target_position_range=np.array([(-0.04, 0.04), (-0.06, 0.02), (0.0, 0.06)]),
|
|
reward_type=reward_type)
|
|
|
|
|
|
class HandPenEnv(ManipulateEnv):
|
|
def __init__(self, target_position='random', target_rotation='xyz', reward_type='sparse'):
|
|
super(HandPenEnv, self).__init__(
|
|
model_path=MANIPULATE_PEN_XML, target_position=target_position,
|
|
target_rotation=target_rotation,
|
|
target_position_range=np.array([(-0.04, 0.04), (-0.06, 0.02), (0.0, 0.06)]),
|
|
randomize_initial_rotation=False, reward_type=reward_type,
|
|
ignore_z_target_rotation=True, distance_threshold=0.05)
|