Files
Gymnasium/gym/spaces/multi_binary.py
Ilya Kamen ad79b0ad0f typing in gym.spaces (#2541)
* typing in spaces.Box and spaces.Discrete

* adds typing to dict and tuple spaces

* Typecheck all spaces

* Explicit regex to include all files under space folder

* Style: use native types and __future__ annotations

* Allow only specific strings for Box.is_bounded args

* Add typing to changes from #2517

* Remove Literal as it's not supported by py3.7

* Use more recent version of pyright

* Avoid name clash for type checker

* Revert "Avoid name clash for type checker"

This reverts commit 1aaf3e0e0328171623a17a997b65fe734bc0afb1.

* Ignore the error. It's reported as probable bug at https://github.com/microsoft/pyright/issues/2852

* rebase and add typing for `_short_repr`
2022-01-24 17:22:11 -05:00

71 lines
1.9 KiB
Python

from __future__ import annotations
from typing import Optional, Union, Sequence
import numpy as np
from .space import Space
class MultiBinary(Space[np.ndarray]):
"""
An n-shape binary space.
The argument to MultiBinary defines n, which could be a number or a `list` of numbers.
Example Usage:
>> self.observation_space = spaces.MultiBinary(5)
>> self.observation_space.sample()
array([0, 1, 0, 1, 0], dtype=int8)
>> self.observation_space = spaces.MultiBinary([3, 2])
>> self.observation_space.sample()
array([[0, 0],
[0, 1],
[1, 1]], dtype=int8)
"""
def __init__(
self, n: Union[np.ndarray, Sequence[int], int], seed: Optional[int] = None
):
if isinstance(n, (Sequence, np.ndarray)):
self.n = input_n = tuple(int(i) for i in n)
else:
self.n = n = int(n)
input_n = (n,)
assert (np.asarray(input_n) > 0).all(), "n (counts) have to be positive"
super().__init__(input_n, np.int8, seed)
@property
def shape(self) -> tuple[int, ...]:
"""Has stricter type than gym.Space - never None."""
return self._shape # type: ignore
def sample(self) -> np.ndarray:
return self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype)
def contains(self, x) -> bool:
if isinstance(x, Sequence):
x = np.array(x) # Promote list to array for contains check
if self.shape != x.shape:
return False
return ((x == 0) | (x == 1)).all()
def to_jsonable(self, sample_n) -> list:
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n) -> list:
return [np.asarray(sample) for sample in sample_n]
def __repr__(self) -> str:
return f"MultiBinary({self.n})"
def __eq__(self, other) -> bool:
return isinstance(other, MultiBinary) and self.n == other.n