mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-02 06:16:32 +00:00
65 lines
1.9 KiB
Python
65 lines
1.9 KiB
Python
from gym.envs.mujoco import mujoco_env
|
|
from gym import utils
|
|
import numpy as np
|
|
|
|
|
|
class HumanoidStandupEnv(mujoco_env.MujocoEnv, utils.EzPickle):
|
|
def __init__(self):
|
|
mujoco_env.MujocoEnv.__init__(self, "humanoidstandup.xml", 5)
|
|
utils.EzPickle.__init__(self)
|
|
|
|
def _get_obs(self):
|
|
data = self.sim.data
|
|
return np.concatenate(
|
|
[
|
|
data.qpos.flat[2:],
|
|
data.qvel.flat,
|
|
data.cinert.flat,
|
|
data.cvel.flat,
|
|
data.qfrc_actuator.flat,
|
|
data.cfrc_ext.flat,
|
|
]
|
|
)
|
|
|
|
def step(self, a):
|
|
self.do_simulation(a, self.frame_skip)
|
|
pos_after = self.sim.data.qpos[2]
|
|
data = self.sim.data
|
|
uph_cost = (pos_after - 0) / self.model.opt.timestep
|
|
|
|
quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum()
|
|
quad_impact_cost = 0.5e-6 * np.square(data.cfrc_ext).sum()
|
|
quad_impact_cost = min(quad_impact_cost, 10)
|
|
reward = uph_cost - quad_ctrl_cost - quad_impact_cost + 1
|
|
|
|
done = bool(False)
|
|
return (
|
|
self._get_obs(),
|
|
reward,
|
|
done,
|
|
dict(
|
|
reward_linup=uph_cost,
|
|
reward_quadctrl=-quad_ctrl_cost,
|
|
reward_impact=-quad_impact_cost,
|
|
),
|
|
)
|
|
|
|
def reset_model(self):
|
|
c = 0.01
|
|
self.set_state(
|
|
self.init_qpos + self.np_random.uniform(low=-c, high=c, size=self.model.nq),
|
|
self.init_qvel
|
|
+ self.np_random.uniform(
|
|
low=-c,
|
|
high=c,
|
|
size=self.model.nv,
|
|
),
|
|
)
|
|
return self._get_obs()
|
|
|
|
def viewer_setup(self):
|
|
self.viewer.cam.trackbodyid = 1
|
|
self.viewer.cam.distance = self.model.stat.extent * 1.0
|
|
self.viewer.cam.lookat[2] = 0.8925
|
|
self.viewer.cam.elevation = -20
|