Files
Gymnasium/gym/envs/robotics/hand/reach.py
2021-07-28 20:26:34 -04:00

162 lines
5.5 KiB
Python

import os
import numpy as np
from gym import utils
from gym.envs.robotics import hand_env
from gym.envs.robotics.utils import robot_get_obs
FINGERTIP_SITE_NAMES = [
"robot0:S_fftip",
"robot0:S_mftip",
"robot0:S_rftip",
"robot0:S_lftip",
"robot0:S_thtip",
]
DEFAULT_INITIAL_QPOS = {
"robot0:WRJ1": -0.16514339750464327,
"robot0:WRJ0": -0.31973286565062153,
"robot0:FFJ3": 0.14340512546557435,
"robot0:FFJ2": 0.32028208333591573,
"robot0:FFJ1": 0.7126053607727917,
"robot0:FFJ0": 0.6705281001412586,
"robot0:MFJ3": 0.000246444303701037,
"robot0:MFJ2": 0.3152655251085491,
"robot0:MFJ1": 0.7659800313729842,
"robot0:MFJ0": 0.7323156897425923,
"robot0:RFJ3": 0.00038520700007378114,
"robot0:RFJ2": 0.36743546201985233,
"robot0:RFJ1": 0.7119514095008576,
"robot0:RFJ0": 0.6699446327514138,
"robot0:LFJ4": 0.0525442258033891,
"robot0:LFJ3": -0.13615534724474673,
"robot0:LFJ2": 0.39872030433433003,
"robot0:LFJ1": 0.7415570009679252,
"robot0:LFJ0": 0.704096378652974,
"robot0:THJ4": 0.003673823825070126,
"robot0:THJ3": 0.5506291436028695,
"robot0:THJ2": -0.014515151997119306,
"robot0:THJ1": -0.0015229223564485414,
"robot0:THJ0": -0.7894883021600622,
}
# Ensure we get the path separator correct on windows
MODEL_XML_PATH = os.path.join("hand", "reach.xml")
def goal_distance(goal_a, goal_b):
assert goal_a.shape == goal_b.shape
return np.linalg.norm(goal_a - goal_b, axis=-1)
class HandReachEnv(hand_env.HandEnv, utils.EzPickle):
def __init__(
self,
distance_threshold=0.01,
n_substeps=20,
relative_control=False,
initial_qpos=DEFAULT_INITIAL_QPOS,
reward_type="sparse",
):
utils.EzPickle.__init__(**locals())
self.distance_threshold = distance_threshold
self.reward_type = reward_type
hand_env.HandEnv.__init__(
self,
MODEL_XML_PATH,
n_substeps=n_substeps,
initial_qpos=initial_qpos,
relative_control=relative_control,
)
def _get_achieved_goal(self):
goal = [self.sim.data.get_site_xpos(name) for name in FINGERTIP_SITE_NAMES]
return np.array(goal).flatten()
# GoalEnv methods
# ----------------------------
def compute_reward(self, achieved_goal, goal, info):
d = goal_distance(achieved_goal, goal)
if self.reward_type == "sparse":
return -(d > self.distance_threshold).astype(np.float32)
else:
return -d
# RobotEnv methods
# ----------------------------
def _env_setup(self, initial_qpos):
for name, value in initial_qpos.items():
self.sim.data.set_joint_qpos(name, value)
self.sim.forward()
self.initial_goal = self._get_achieved_goal().copy()
self.palm_xpos = self.sim.data.body_xpos[
self.sim.model.body_name2id("robot0:palm")
].copy()
def _get_obs(self):
robot_qpos, robot_qvel = robot_get_obs(self.sim)
achieved_goal = self._get_achieved_goal().ravel()
observation = np.concatenate([robot_qpos, robot_qvel, achieved_goal])
return {
"observation": observation.copy(),
"achieved_goal": achieved_goal.copy(),
"desired_goal": self.goal.copy(),
}
def _sample_goal(self):
thumb_name = "robot0:S_thtip"
finger_names = [name for name in FINGERTIP_SITE_NAMES if name != thumb_name]
finger_name = self.np_random.choice(finger_names)
thumb_idx = FINGERTIP_SITE_NAMES.index(thumb_name)
finger_idx = FINGERTIP_SITE_NAMES.index(finger_name)
assert thumb_idx != finger_idx
# Pick a meeting point above the hand.
meeting_pos = self.palm_xpos + np.array([0.0, -0.09, 0.05])
meeting_pos += self.np_random.normal(scale=0.005, size=meeting_pos.shape)
# Slightly move meeting goal towards the respective finger to avoid that they
# overlap.
goal = self.initial_goal.copy().reshape(-1, 3)
for idx in [thumb_idx, finger_idx]:
offset_direction = meeting_pos - goal[idx]
offset_direction /= np.linalg.norm(offset_direction)
goal[idx] = meeting_pos - 0.005 * offset_direction
if self.np_random.uniform() < 0.1:
# With some probability, ask all fingers to move back to the origin.
# This avoids that the thumb constantly stays near the goal position already.
goal = self.initial_goal.copy()
return goal.flatten()
def _is_success(self, achieved_goal, desired_goal):
d = goal_distance(achieved_goal, desired_goal)
return (d < self.distance_threshold).astype(np.float32)
def _render_callback(self):
# Visualize targets.
sites_offset = (self.sim.data.site_xpos - self.sim.model.site_pos).copy()
goal = self.goal.reshape(5, 3)
for finger_idx in range(5):
site_name = "target{}".format(finger_idx)
site_id = self.sim.model.site_name2id(site_name)
self.sim.model.site_pos[site_id] = goal[finger_idx] - sites_offset[site_id]
# Visualize finger positions.
achieved_goal = self._get_achieved_goal().reshape(5, 3)
for finger_idx in range(5):
site_name = "finger{}".format(finger_idx)
site_id = self.sim.model.site_name2id(site_name)
self.sim.model.site_pos[site_id] = (
achieved_goal[finger_idx] - sites_offset[site_id]
)
self.sim.forward()