Files
Gymnasium/gym/envs/toy_text/discrete.py
2021-07-28 20:26:34 -04:00

62 lines
1.5 KiB
Python

import numpy as np
from gym import Env, spaces
from gym.utils import seeding
def categorical_sample(prob_n, np_random):
"""
Sample from categorical distribution
Each row specifies class probabilities
"""
prob_n = np.asarray(prob_n)
csprob_n = np.cumsum(prob_n)
return (csprob_n > np_random.rand()).argmax()
class DiscreteEnv(Env):
"""
Has the following members
- nS: number of states
- nA: number of actions
- P: transitions (*)
- isd: initial state distribution (**)
(*) dictionary of lists, where
P[s][a] == [(probability, nextstate, reward, done), ...]
(**) list or array of length nS
"""
def __init__(self, nS, nA, P, isd):
self.P = P
self.isd = isd
self.lastaction = None # for rendering
self.nS = nS
self.nA = nA
self.action_space = spaces.Discrete(self.nA)
self.observation_space = spaces.Discrete(self.nS)
self.seed()
self.s = categorical_sample(self.isd, self.np_random)
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def reset(self):
self.s = categorical_sample(self.isd, self.np_random)
self.lastaction = None
return int(self.s)
def step(self, a):
transitions = self.P[self.s][a]
i = categorical_sample([t[0] for t in transitions], self.np_random)
p, s, r, d = transitions[i]
self.s = s
self.lastaction = a
return (int(s), r, d, {"prob": p})