Files
Gymnasium/gym/envs/classic_control/mountain_car.py
Mark Towers bf093c6890 Update the flake8 pre-commit ignores (#2778)
* Remove additional ignores from flake8

* Remove all unused imports

* Remove all unused imports

* Update flake8 and pyupgrade

* F841, removed unused variables

* E731, removed lambda assignment to variables

* Remove E731, F403, F405, F524

* Remove E722, bare exceptions

* Remove E712, compare variable == True or == False to is True or is False

* Remove E402, module level import not at top of file

* Added --pre-file-ignores

* Add --per-file-ignores removing E741, E302 and E704

* Add E741, do not use variables named ‘l’, ‘O’, or ‘I’ to ignore issues in classic control

* Fixed issues for pytest==6.2

* Remove unnecessary # noqa

* Edit comment with the removal of E302

* Added warnings and declared module, attr for pyright type hinting

* Remove unused import

* Removed flake8 E302

* Updated flake8 from 3.9.2 to 4.0.1

* Remove unused variable
2022-04-26 11:18:37 -04:00

250 lines
8.8 KiB
Python

"""
http://incompleteideas.net/MountainCar/MountainCar1.cp
permalink: https://perma.cc/6Z2N-PFWC
"""
import math
from typing import Optional
import numpy as np
import gym
from gym import spaces
class MountainCarEnv(gym.Env):
"""
### Description
The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically
at the bottom of a sinusoidal valley, with the only possible actions being the accelerations
that can be applied to the car in either direction. The goal of the MDP is to strategically
accelerate the car to reach the goal state on top of the right hill. There are two versions
of the mountain car domain in gym: one with discrete actions and one with continuous.
This version is the one with discrete actions.
This MDP first appeared in [Andrew Moore's PhD Thesis (1990)](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf)
```
@TECHREPORT{Moore90efficientmemory-based,
author = {Andrew William Moore},
title = {Efficient Memory-based Learning for Robot Control},
institution = {University of Cambridge},
year = {1990}
}
```
### Observation Space
The observation is a `ndarray` with shape `(2,)` where the elements correspond to the following:
| Num | Observation | Min | Max | Unit |
|-----|-------------------------------------------------------------|--------------------|--------|------|
| 0 | position of the car along the x-axis | -Inf | Inf | position (m) |
| 1 | velocity of the car | -Inf | Inf | position (m) |
### Action Space
There are 3 discrete deterministic actions:
| Num | Observation | Value | Unit |
|-----|-------------------------------------------------------------|---------|------|
| 0 | Accelerate to the left | Inf | position (m) |
| 1 | Don't accelerate | Inf | position (m) |
| 2 | Accelerate to the right | Inf | position (m) |
### Transition Dynamics:
Given an action, the mountain car follows the following transition dynamics:
*velocity<sub>t+1</sub> = velocity<sub>t</sub> + (action - 1) * force - cos(3 * position<sub>t</sub>) * gravity*
*position<sub>t+1</sub> = position<sub>t</sub> + velocity<sub>t+1</sub>*
where force = 0.001 and gravity = 0.0025. The collisions at either end are inelastic with the velocity set to 0 upon collision with the wall. The position is clipped to the range `[-1.2, 0.6]` and velocity is clipped to the range `[-0.07, 0.07]`.
### Reward:
The goal is to reach the flag placed on top of the right hill as quickly as possible, as such the agent is penalised with a reward of -1 for each timestep it isn't at the goal and is not penalised (reward = 0) for when it reaches the goal.
### Starting State
The position of the car is assigned a uniform random value in *[-0.6 , -0.4]*. The starting velocity of the car is always assigned to 0.
### Episode Termination
The episode terminates if either of the following happens:
1. The position of the car is greater than or equal to 0.5 (the goal position on top of the right hill)
2. The length of the episode is 200.
### Arguments
```
gym.make('MountainCar-v0')
```
### Version History
* v0: Initial versions release (1.0.0)
"""
metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 30}
def __init__(self, goal_velocity=0):
self.min_position = -1.2
self.max_position = 0.6
self.max_speed = 0.07
self.goal_position = 0.5
self.goal_velocity = goal_velocity
self.force = 0.001
self.gravity = 0.0025
self.low = np.array([self.min_position, -self.max_speed], dtype=np.float32)
self.high = np.array([self.max_position, self.max_speed], dtype=np.float32)
self.screen = None
self.clock = None
self.isopen = True
self.action_space = spaces.Discrete(3)
self.observation_space = spaces.Box(self.low, self.high, dtype=np.float32)
def step(self, action: int):
assert self.action_space.contains(
action
), f"{action!r} ({type(action)}) invalid"
position, velocity = self.state
velocity += (action - 1) * self.force + math.cos(3 * position) * (-self.gravity)
velocity = np.clip(velocity, -self.max_speed, self.max_speed)
position += velocity
position = np.clip(position, self.min_position, self.max_position)
if position == self.min_position and velocity < 0:
velocity = 0
done = bool(position >= self.goal_position and velocity >= self.goal_velocity)
reward = -1.0
self.state = (position, velocity)
return np.array(self.state, dtype=np.float32), reward, done, {}
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
super().reset(seed=seed)
self.state = np.array([self.np_random.uniform(low=-0.6, high=-0.4), 0])
if not return_info:
return np.array(self.state, dtype=np.float32)
else:
return np.array(self.state, dtype=np.float32), {}
def _height(self, xs):
return np.sin(3 * xs) * 0.45 + 0.55
def render(self, mode="human"):
import pygame
from pygame import gfxdraw
screen_width = 600
screen_height = 400
world_width = self.max_position - self.min_position
scale = screen_width / world_width
carwidth = 40
carheight = 20
if self.screen is None:
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((screen_width, screen_height))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((screen_width, screen_height))
self.surf.fill((255, 255, 255))
pos = self.state[0]
xs = np.linspace(self.min_position, self.max_position, 100)
ys = self._height(xs)
xys = list(zip((xs - self.min_position) * scale, ys * scale))
pygame.draw.aalines(self.surf, points=xys, closed=False, color=(0, 0, 0))
clearance = 10
l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0
coords = []
for c in [(l, b), (l, t), (r, t), (r, b)]:
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
coords.append(
(
c[0] + (pos - self.min_position) * scale,
c[1] + clearance + self._height(pos) * scale,
)
)
gfxdraw.aapolygon(self.surf, coords, (0, 0, 0))
gfxdraw.filled_polygon(self.surf, coords, (0, 0, 0))
for c in [(carwidth / 4, 0), (-carwidth / 4, 0)]:
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
wheel = (
int(c[0] + (pos - self.min_position) * scale),
int(c[1] + clearance + self._height(pos) * scale),
)
gfxdraw.aacircle(
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
)
gfxdraw.filled_circle(
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
)
flagx = int((self.goal_position - self.min_position) * scale)
flagy1 = int(self._height(self.goal_position) * scale)
flagy2 = flagy1 + 50
gfxdraw.vline(self.surf, flagx, flagy1, flagy2, (0, 0, 0))
gfxdraw.aapolygon(
self.surf,
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
(204, 204, 0),
)
gfxdraw.filled_polygon(
self.surf,
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
(204, 204, 0),
)
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
if mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
else:
return self.isopen
def get_keys_to_action(self):
# Control with left and right arrow keys.
return {(): 1, (276,): 0, (275,): 2, (275, 276): 1}
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False