Files
Gymnasium/gym/envs/unittest/memorize_digits.py
Ariel Kwiatkowski c364506710 Seeding update (#2422)
* Ditch most of the seeding.py and replace np_random with the numpy default_rng. Let's see if tests pass

* Updated a bunch of RNG calls from the RandomState API to Generator API

* black; didn't expect that, did ya?

* Undo a typo

* blaaack

* More typo fixes

* Fixed setting/getting state in multidiscrete spaces

* Fix typo, fix a test to work with the new sampling

* Correctly (?) pass the randomly generated seed if np_random is called with None as seed

* Convert the Discrete sample to a python int (as opposed to np.int64)

* Remove some redundant imports

* First version of the compatibility layer for old-style RNG. Mainly to trigger tests.

* Removed redundant f-strings

* Style fixes, removing unused imports

* Try to make tests pass by removing atari from the dockerfile

* Try to make tests pass by removing atari from the setup

* Try to make tests pass by removing atari from the setup

* Try to make tests pass by removing atari from the setup

* First attempt at deprecating `env.seed` and supporting `env.reset(seed=seed)` instead. Tests should hopefully pass but throw up a million warnings.

* black; didn't expect that, didya?

* Rename the reset parameter in VecEnvs back to `seed`

* Updated tests to use the new seeding method

* Removed a bunch of old `seed` calls.

Fixed a bug in AsyncVectorEnv

* Stop Discrete envs from doing part of the setup (and using the randomness) in init (as opposed to reset)

* Add explicit seed to wrappers reset

* Remove an accidental return

* Re-add some legacy functions with a warning.

* Use deprecation instead of regular warnings for the newly deprecated methods/functions
2021-12-08 16:14:15 -05:00

145 lines
4.7 KiB
Python

from typing import Optional
import numpy as np
import gym
from gym import spaces
from gym.utils import seeding
# Unit test environment for CNNs.
# Looks like this (RGB observations):
#
# ---------------------------
# | |
# | ****** |
# | ****** |
# | ** ** |
# | ** ** |
# | ** |
# | ** |
# | **** |
# | **** |
# | **** |
# | **** |
# | ********** |
# | ********** |
# | |
# ---------------------------
#
# Agent should hit action 2 to gain reward. Catches off-by-one errors in your agent.
#
# To see how it works, run:
#
# python examples/agents/keyboard_agent.py MemorizeDigits-v0
FIELD_W = 32
FIELD_H = 24
bogus_mnist = [
[" **** ", "* *", "* *", "* *", "* *", " **** "],
[" ** ", " * * ", " * ", " * ", " * ", " *** "],
[" **** ", "* *", " *", " *** ", "** ", "******"],
[" **** ", "* *", " ** ", " *", "* *", " **** "],
[" * * ", " * * ", " * * ", " **** ", " * ", " * "],
[" **** ", " * ", " **** ", " * ", " * ", " **** "],
[" *** ", " * ", " **** ", " * * ", " * * ", " **** "],
[" **** ", " * ", " * ", " * ", " * ", " * "],
[" **** ", "* *", " **** ", "* *", "* *", " **** "],
[" **** ", "* *", "* *", " *****", " *", " **** "],
]
color_black = np.array((0, 0, 0)).astype("float32")
color_white = np.array((255, 255, 255)).astype("float32")
class MemorizeDigits(gym.Env):
metadata = {
"render.modes": ["human", "rgb_array"],
"video.frames_per_second": 60,
"video.res_w": FIELD_W,
"video.res_h": FIELD_H,
}
use_random_colors = False
def __init__(self):
self.viewer = None
self.observation_space = spaces.Box(
0, 255, (FIELD_H, FIELD_W, 3), dtype=np.uint8
)
self.action_space = spaces.Discrete(10)
self.bogus_mnist = np.zeros((10, 6, 6), dtype=np.uint8)
for digit in range(10):
for y in range(6):
self.bogus_mnist[digit, y, :] = [
ord(char) for char in bogus_mnist[digit][y]
]
self.reset()
def random_color(self):
return np.array(
[
self.np_random.integers(low=0, high=255),
self.np_random.integers(low=0, high=255),
self.np_random.integers(low=0, high=255),
]
).astype("uint8")
def reset(self, seed: Optional[int] = None):
super().reset(seed=seed)
self.digit_x = self.np_random.integers(low=FIELD_W // 5, high=FIELD_W // 5 * 4)
self.digit_y = self.np_random.integers(low=FIELD_H // 5, high=FIELD_H // 5 * 4)
self.color_bg = self.random_color() if self.use_random_colors else color_black
self.step_n = 0
while 1:
self.color_digit = (
self.random_color() if self.use_random_colors else color_white
)
if np.linalg.norm(self.color_digit - self.color_bg) < 50:
continue
break
self.digit = -1
return self.step(0)[0]
def step(self, action):
reward = -1
done = False
self.step_n += 1
if self.digit == -1:
pass
else:
if self.digit == action:
reward = +1
done = self.step_n > 20 and 0 == self.np_random.integers(low=0, high=5)
self.digit = self.np_random.integers(low=0, high=10)
obs = np.zeros((FIELD_H, FIELD_W, 3), dtype=np.uint8)
obs[:, :, :] = self.color_bg
digit_img = np.zeros((6, 6, 3), dtype=np.uint8)
digit_img[:] = self.color_bg
xxx = self.bogus_mnist[self.digit] == 42
digit_img[xxx] = self.color_digit
obs[
self.digit_y - 3 : self.digit_y + 3, self.digit_x - 3 : self.digit_x + 3
] = digit_img
self.last_obs = obs
return obs, reward, done, {}
def render(self, mode="human"):
if mode == "rgb_array":
return self.last_obs
elif mode == "human":
from gym.envs.classic_control import rendering
if self.viewer is None:
self.viewer = rendering.SimpleImageViewer()
self.viewer.imshow(self.last_obs)
return self.viewer.isopen
else:
assert 0, f"Render mode '{mode}' is not supported"
def close(self):
if self.viewer is not None:
self.viewer.close()
self.viewer = None