mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
* Ditch most of the seeding.py and replace np_random with the numpy default_rng. Let's see if tests pass * Updated a bunch of RNG calls from the RandomState API to Generator API * black; didn't expect that, did ya? * Undo a typo * blaaack * More typo fixes * Fixed setting/getting state in multidiscrete spaces * Fix typo, fix a test to work with the new sampling * Correctly (?) pass the randomly generated seed if np_random is called with None as seed * Convert the Discrete sample to a python int (as opposed to np.int64) * Remove some redundant imports * First version of the compatibility layer for old-style RNG. Mainly to trigger tests. * Removed redundant f-strings * Style fixes, removing unused imports * Try to make tests pass by removing atari from the dockerfile * Try to make tests pass by removing atari from the setup * Try to make tests pass by removing atari from the setup * Try to make tests pass by removing atari from the setup * First attempt at deprecating `env.seed` and supporting `env.reset(seed=seed)` instead. Tests should hopefully pass but throw up a million warnings. * black; didn't expect that, didya? * Rename the reset parameter in VecEnvs back to `seed` * Updated tests to use the new seeding method * Removed a bunch of old `seed` calls. Fixed a bug in AsyncVectorEnv * Stop Discrete envs from doing part of the setup (and using the randomness) in init (as opposed to reset) * Add explicit seed to wrappers reset * Remove an accidental return * Re-add some legacy functions with a warning. * Use deprecation instead of regular warnings for the newly deprecated methods/functions
145 lines
4.7 KiB
Python
145 lines
4.7 KiB
Python
from typing import Optional
|
|
|
|
import numpy as np
|
|
import gym
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
|
|
# Unit test environment for CNNs.
|
|
# Looks like this (RGB observations):
|
|
#
|
|
# ---------------------------
|
|
# | |
|
|
# | ****** |
|
|
# | ****** |
|
|
# | ** ** |
|
|
# | ** ** |
|
|
# | ** |
|
|
# | ** |
|
|
# | **** |
|
|
# | **** |
|
|
# | **** |
|
|
# | **** |
|
|
# | ********** |
|
|
# | ********** |
|
|
# | |
|
|
# ---------------------------
|
|
#
|
|
# Agent should hit action 2 to gain reward. Catches off-by-one errors in your agent.
|
|
#
|
|
# To see how it works, run:
|
|
#
|
|
# python examples/agents/keyboard_agent.py MemorizeDigits-v0
|
|
|
|
FIELD_W = 32
|
|
FIELD_H = 24
|
|
|
|
bogus_mnist = [
|
|
[" **** ", "* *", "* *", "* *", "* *", " **** "],
|
|
[" ** ", " * * ", " * ", " * ", " * ", " *** "],
|
|
[" **** ", "* *", " *", " *** ", "** ", "******"],
|
|
[" **** ", "* *", " ** ", " *", "* *", " **** "],
|
|
[" * * ", " * * ", " * * ", " **** ", " * ", " * "],
|
|
[" **** ", " * ", " **** ", " * ", " * ", " **** "],
|
|
[" *** ", " * ", " **** ", " * * ", " * * ", " **** "],
|
|
[" **** ", " * ", " * ", " * ", " * ", " * "],
|
|
[" **** ", "* *", " **** ", "* *", "* *", " **** "],
|
|
[" **** ", "* *", "* *", " *****", " *", " **** "],
|
|
]
|
|
|
|
color_black = np.array((0, 0, 0)).astype("float32")
|
|
color_white = np.array((255, 255, 255)).astype("float32")
|
|
|
|
|
|
class MemorizeDigits(gym.Env):
|
|
metadata = {
|
|
"render.modes": ["human", "rgb_array"],
|
|
"video.frames_per_second": 60,
|
|
"video.res_w": FIELD_W,
|
|
"video.res_h": FIELD_H,
|
|
}
|
|
|
|
use_random_colors = False
|
|
|
|
def __init__(self):
|
|
self.viewer = None
|
|
self.observation_space = spaces.Box(
|
|
0, 255, (FIELD_H, FIELD_W, 3), dtype=np.uint8
|
|
)
|
|
self.action_space = spaces.Discrete(10)
|
|
self.bogus_mnist = np.zeros((10, 6, 6), dtype=np.uint8)
|
|
for digit in range(10):
|
|
for y in range(6):
|
|
self.bogus_mnist[digit, y, :] = [
|
|
ord(char) for char in bogus_mnist[digit][y]
|
|
]
|
|
self.reset()
|
|
|
|
def random_color(self):
|
|
return np.array(
|
|
[
|
|
self.np_random.integers(low=0, high=255),
|
|
self.np_random.integers(low=0, high=255),
|
|
self.np_random.integers(low=0, high=255),
|
|
]
|
|
).astype("uint8")
|
|
|
|
def reset(self, seed: Optional[int] = None):
|
|
super().reset(seed=seed)
|
|
self.digit_x = self.np_random.integers(low=FIELD_W // 5, high=FIELD_W // 5 * 4)
|
|
self.digit_y = self.np_random.integers(low=FIELD_H // 5, high=FIELD_H // 5 * 4)
|
|
self.color_bg = self.random_color() if self.use_random_colors else color_black
|
|
self.step_n = 0
|
|
while 1:
|
|
self.color_digit = (
|
|
self.random_color() if self.use_random_colors else color_white
|
|
)
|
|
if np.linalg.norm(self.color_digit - self.color_bg) < 50:
|
|
continue
|
|
break
|
|
self.digit = -1
|
|
return self.step(0)[0]
|
|
|
|
def step(self, action):
|
|
reward = -1
|
|
done = False
|
|
self.step_n += 1
|
|
if self.digit == -1:
|
|
pass
|
|
else:
|
|
if self.digit == action:
|
|
reward = +1
|
|
done = self.step_n > 20 and 0 == self.np_random.integers(low=0, high=5)
|
|
self.digit = self.np_random.integers(low=0, high=10)
|
|
obs = np.zeros((FIELD_H, FIELD_W, 3), dtype=np.uint8)
|
|
obs[:, :, :] = self.color_bg
|
|
digit_img = np.zeros((6, 6, 3), dtype=np.uint8)
|
|
digit_img[:] = self.color_bg
|
|
xxx = self.bogus_mnist[self.digit] == 42
|
|
digit_img[xxx] = self.color_digit
|
|
obs[
|
|
self.digit_y - 3 : self.digit_y + 3, self.digit_x - 3 : self.digit_x + 3
|
|
] = digit_img
|
|
self.last_obs = obs
|
|
return obs, reward, done, {}
|
|
|
|
def render(self, mode="human"):
|
|
if mode == "rgb_array":
|
|
return self.last_obs
|
|
|
|
elif mode == "human":
|
|
from gym.envs.classic_control import rendering
|
|
|
|
if self.viewer is None:
|
|
self.viewer = rendering.SimpleImageViewer()
|
|
self.viewer.imshow(self.last_obs)
|
|
return self.viewer.isopen
|
|
|
|
else:
|
|
assert 0, f"Render mode '{mode}' is not supported"
|
|
|
|
def close(self):
|
|
if self.viewer is not None:
|
|
self.viewer.close()
|
|
self.viewer = None
|