Files
Gymnasium/tests/vector/utils.py
Ariel Kwiatkowski c364506710 Seeding update (#2422)
* Ditch most of the seeding.py and replace np_random with the numpy default_rng. Let's see if tests pass

* Updated a bunch of RNG calls from the RandomState API to Generator API

* black; didn't expect that, did ya?

* Undo a typo

* blaaack

* More typo fixes

* Fixed setting/getting state in multidiscrete spaces

* Fix typo, fix a test to work with the new sampling

* Correctly (?) pass the randomly generated seed if np_random is called with None as seed

* Convert the Discrete sample to a python int (as opposed to np.int64)

* Remove some redundant imports

* First version of the compatibility layer for old-style RNG. Mainly to trigger tests.

* Removed redundant f-strings

* Style fixes, removing unused imports

* Try to make tests pass by removing atari from the dockerfile

* Try to make tests pass by removing atari from the setup

* Try to make tests pass by removing atari from the setup

* Try to make tests pass by removing atari from the setup

* First attempt at deprecating `env.seed` and supporting `env.reset(seed=seed)` instead. Tests should hopefully pass but throw up a million warnings.

* black; didn't expect that, didya?

* Rename the reset parameter in VecEnvs back to `seed`

* Updated tests to use the new seeding method

* Removed a bunch of old `seed` calls.

Fixed a bug in AsyncVectorEnv

* Stop Discrete envs from doing part of the setup (and using the randomness) in init (as opposed to reset)

* Add explicit seed to wrappers reset

* Remove an accidental return

* Re-add some legacy functions with a warning.

* Use deprecation instead of regular warnings for the newly deprecated methods/functions
2021-12-08 16:14:15 -05:00

127 lines
3.2 KiB
Python

from typing import Optional
import numpy as np
import gym
import time
from gym.spaces import Box, Discrete, MultiDiscrete, MultiBinary, Tuple, Dict
spaces = [
Box(low=np.array(-1.0), high=np.array(1.0), dtype=np.float64),
Box(low=np.array([0.0]), high=np.array([10.0]), dtype=np.float32),
Box(
low=np.array([-1.0, 0.0, 0.0]), high=np.array([1.0, 1.0, 1.0]), dtype=np.float32
),
Box(
low=np.array([[-1.0, 0.0], [0.0, -1.0]]), high=np.ones((2, 2)), dtype=np.float32
),
Box(low=0, high=255, shape=(), dtype=np.uint8),
Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8),
Discrete(2),
Tuple((Discrete(3), Discrete(5))),
Tuple(
(
Discrete(7),
Box(low=np.array([0.0, -1.0]), high=np.array([1.0, 1.0]), dtype=np.float32),
)
),
MultiDiscrete([11, 13, 17]),
MultiBinary(19),
Dict(
{
"position": Discrete(23),
"velocity": Box(
low=np.array([0.0]), high=np.array([1.0]), dtype=np.float32
),
}
),
Dict(
{
"position": Dict({"x": Discrete(29), "y": Discrete(31)}),
"velocity": Tuple(
(Discrete(37), Box(low=0, high=255, shape=(), dtype=np.uint8))
),
}
),
]
HEIGHT, WIDTH = 64, 64
class UnittestSlowEnv(gym.Env):
def __init__(self, slow_reset=0.3):
super(UnittestSlowEnv, self).__init__()
self.slow_reset = slow_reset
self.observation_space = Box(
low=0, high=255, shape=(HEIGHT, WIDTH, 3), dtype=np.uint8
)
self.action_space = Box(low=0.0, high=1.0, shape=(), dtype=np.float32)
def reset(self, seed: Optional[int] = None):
super().reset(seed=seed)
if self.slow_reset > 0:
time.sleep(self.slow_reset)
return self.observation_space.sample()
def step(self, action):
time.sleep(action)
observation = self.observation_space.sample()
reward, done = 0.0, False
return observation, reward, done, {}
class CustomSpace(gym.Space):
"""Minimal custom observation space."""
def __eq__(self, other):
return isinstance(other, CustomSpace)
custom_spaces = [
CustomSpace(),
Tuple((CustomSpace(), Box(low=0, high=255, shape=(), dtype=np.uint8))),
]
class CustomSpaceEnv(gym.Env):
def __init__(self):
super(CustomSpaceEnv, self).__init__()
self.observation_space = CustomSpace()
self.action_space = CustomSpace()
def reset(self, seed: Optional[int] = None):
super().reset(seed=seed)
return "reset"
def step(self, action):
observation = "step({0:s})".format(action)
reward, done = 0.0, False
return observation, reward, done, {}
def make_env(env_name, seed):
def _make():
env = gym.make(env_name)
env.reset(seed=seed)
return env
return _make
def make_slow_env(slow_reset, seed):
def _make():
env = UnittestSlowEnv(slow_reset=slow_reset)
env.reset(seed=seed)
return env
return _make
def make_custom_space_env(seed):
def _make():
env = CustomSpaceEnv()
env.reset(seed=seed)
return env
return _make