Files
Gymnasium/tests/wrappers/test_pixel_observation.py
Ariel Kwiatkowski c364506710 Seeding update (#2422)
* Ditch most of the seeding.py and replace np_random with the numpy default_rng. Let's see if tests pass

* Updated a bunch of RNG calls from the RandomState API to Generator API

* black; didn't expect that, did ya?

* Undo a typo

* blaaack

* More typo fixes

* Fixed setting/getting state in multidiscrete spaces

* Fix typo, fix a test to work with the new sampling

* Correctly (?) pass the randomly generated seed if np_random is called with None as seed

* Convert the Discrete sample to a python int (as opposed to np.int64)

* Remove some redundant imports

* First version of the compatibility layer for old-style RNG. Mainly to trigger tests.

* Removed redundant f-strings

* Style fixes, removing unused imports

* Try to make tests pass by removing atari from the dockerfile

* Try to make tests pass by removing atari from the setup

* Try to make tests pass by removing atari from the setup

* Try to make tests pass by removing atari from the setup

* First attempt at deprecating `env.seed` and supporting `env.reset(seed=seed)` instead. Tests should hopefully pass but throw up a million warnings.

* black; didn't expect that, didya?

* Rename the reset parameter in VecEnvs back to `seed`

* Updated tests to use the new seeding method

* Removed a bunch of old `seed` calls.

Fixed a bug in AsyncVectorEnv

* Stop Discrete envs from doing part of the setup (and using the randomness) in init (as opposed to reset)

* Add explicit seed to wrappers reset

* Remove an accidental return

* Re-add some legacy functions with a warning.

* Use deprecation instead of regular warnings for the newly deprecated methods/functions
2021-12-08 16:14:15 -05:00

125 lines
4.3 KiB
Python

"""Tests for the pixel observation wrapper."""
from typing import Optional
import pytest
import numpy as np
import gym
from gym import spaces
from gym.wrappers.pixel_observation import PixelObservationWrapper, STATE_KEY
class FakeEnvironment(gym.Env):
def __init__(self):
self.action_space = spaces.Box(shape=(1,), low=-1, high=1, dtype=np.float32)
def render(self, width=32, height=32, *args, **kwargs):
del args
del kwargs
image_shape = (height, width, 3)
return np.zeros(image_shape, dtype=np.uint8)
def reset(self, seed: Optional[int] = None):
super().reset(seed=seed)
observation = self.observation_space.sample()
return observation
def step(self, action):
del action
observation = self.observation_space.sample()
reward, terminal, info = 0.0, False, {}
return observation, reward, terminal, info
class FakeArrayObservationEnvironment(FakeEnvironment):
def __init__(self, *args, **kwargs):
self.observation_space = spaces.Box(
shape=(2,), low=-1, high=1, dtype=np.float32
)
super(FakeArrayObservationEnvironment, self).__init__(*args, **kwargs)
class FakeDictObservationEnvironment(FakeEnvironment):
def __init__(self, *args, **kwargs):
self.observation_space = spaces.Dict(
{
"state": spaces.Box(shape=(2,), low=-1, high=1, dtype=np.float32),
}
)
super(FakeDictObservationEnvironment, self).__init__(*args, **kwargs)
class TestPixelObservationWrapper(object):
@pytest.mark.parametrize("pixels_only", (True, False))
def test_dict_observation(self, pixels_only):
pixel_key = "rgb"
env = FakeDictObservationEnvironment()
# Make sure we are testing the right environment for the test.
observation_space = env.observation_space
assert isinstance(observation_space, spaces.Dict)
width, height = (320, 240)
# The wrapper should only add one observation.
wrapped_env = PixelObservationWrapper(
env,
pixel_keys=(pixel_key,),
pixels_only=pixels_only,
render_kwargs={pixel_key: {"width": width, "height": height}},
)
assert isinstance(wrapped_env.observation_space, spaces.Dict)
if pixels_only:
assert len(wrapped_env.observation_space.spaces) == 1
assert list(wrapped_env.observation_space.spaces.keys()) == [pixel_key]
else:
assert (
len(wrapped_env.observation_space.spaces)
== len(observation_space.spaces) + 1
)
expected_keys = list(observation_space.spaces.keys()) + [pixel_key]
assert list(wrapped_env.observation_space.spaces.keys()) == expected_keys
# Check that the added space item is consistent with the added observation.
observation = wrapped_env.reset()
rgb_observation = observation[pixel_key]
assert rgb_observation.shape == (height, width, 3)
assert rgb_observation.dtype == np.uint8
@pytest.mark.parametrize("pixels_only", (True, False))
def test_single_array_observation(self, pixels_only):
pixel_key = "depth"
env = FakeArrayObservationEnvironment()
observation_space = env.observation_space
assert isinstance(observation_space, spaces.Box)
wrapped_env = PixelObservationWrapper(
env, pixel_keys=(pixel_key,), pixels_only=pixels_only
)
wrapped_env.observation_space = wrapped_env.observation_space
assert isinstance(wrapped_env.observation_space, spaces.Dict)
if pixels_only:
assert len(wrapped_env.observation_space.spaces) == 1
assert list(wrapped_env.observation_space.spaces.keys()) == [pixel_key]
else:
assert len(wrapped_env.observation_space.spaces) == 2
assert list(wrapped_env.observation_space.spaces.keys()) == [
STATE_KEY,
pixel_key,
]
observation = wrapped_env.reset()
depth_observation = observation[pixel_key]
assert depth_observation.shape == (32, 32, 3)
assert depth_observation.dtype == np.uint8
if not pixels_only:
assert isinstance(observation[STATE_KEY], np.ndarray)