Files
Gymnasium/gym/vector/async_vector_env.py
Tristan Deleu c6a97e17ee Vectorized environments (#1513)
* Initial version of vectorized environments

* Raise an exception in the main process if child process raises an exception

* Add list of exposed functions in vector module

* Use deepcopy instead of np.copy

* Add documentation for vector utils

* Add tests for copy in AsyncVectorEnv

* Add example in documentation for batch_space

* Add cloudpickle dependency in setup.py

* Fix __del__ in VectorEnv

* Check if all observation spaces are equal in AsyncVectorEnv

* Check if all observation spaces are equal in SyncVectorEnv

* Fix spaces non equality in SyncVectorEnv for Python 2

* Handle None parameter in create_empty_array

* Fix check_observation_space with spaces equality

* Raise an exception when operations are out of order in AsyncVectorEnv

* Add version requirement for cloudpickle

* Use a state instead of binary flags in AsyncVectorEnv

* Use numpy.zeros when initializing observations in vectorized environments

* Remove poll from public API in AsyncVectorEnv

* Remove close_extras from VectorEnv

* Add test between AsyncVectorEnv and SyncVectorEnv

* Remove close in check_observation_space

* Add documentation for seed and close

* Refactor exceptions for AsyncVectorEnv

* Close pipes if the environment raises an error

* Add tests for out of order operations

* Change default argument in create_empty_array to np.zeros

* Add get_attr and set_attr methods to VectorEnv

* Improve consistency in SyncVectorEnv
2019-06-21 14:29:44 -07:00

406 lines
15 KiB
Python

import numpy as np
import multiprocessing as mp
import time
import sys
from enum import Enum
from copy import deepcopy
from gym import logger
from gym.vector.vector_env import VectorEnv
from gym.error import (AlreadyPendingCallError, NoAsyncCallError,
ClosedEnvironmentError)
from gym.vector.utils import (create_shared_memory, create_empty_array,
write_to_shared_memory, read_from_shared_memory,
concatenate, CloudpickleWrapper, clear_mpi_env_vars)
__all__ = ['AsyncVectorEnv']
class AsyncState(Enum):
DEFAULT = 'default'
WAITING_RESET = 'reset'
WAITING_STEP = 'step'
class AsyncVectorEnv(VectorEnv):
"""Vectorized environment that runs multiple environments in parallel. It
uses `multiprocessing` processes, and pipes for communication.
Parameters
----------
env_fns : iterable of callable
Functions that create the environments.
observation_space : `gym.spaces.Space` instance, optional
Observation space of a single environment. If `None`, then the
observation space of the first environment is taken.
action_space : `gym.spaces.Space` instance, optional
Action space of a single environment. If `None`, then the action space
of the first environment is taken.
shared_memory : bool (default: `True`)
If `True`, then the observations from the worker processes are
communicated back through shared variables. This can improve the
efficiency if the observations are large (e.g. images).
copy : bool (default: `True`)
If `True`, then the `reset` and `step` methods return a copy of the
observations.
context : str, optional
Context for multiprocessing. If `None`, then the default context is used.
Only available in Python 3.
"""
def __init__(self, env_fns, observation_space=None, action_space=None,
shared_memory=True, copy=True, context=None):
try:
ctx = mp.get_context(context)
except AttributeError:
logger.warn('Context switching for `multiprocessing` is not '
'available in Python 2. Using the default context.')
ctx = mp
self.env_fns = env_fns
self.shared_memory = shared_memory
self.copy = copy
if (observation_space is None) or (action_space is None):
dummy_env = env_fns[0]()
observation_space = observation_space or dummy_env.observation_space
action_space = action_space or dummy_env.action_space
dummy_env.close()
del dummy_env
super(AsyncVectorEnv, self).__init__(num_envs=len(env_fns),
observation_space=observation_space, action_space=action_space)
if self.shared_memory:
_obs_buffer = create_shared_memory(self.single_observation_space,
n=self.num_envs)
self.observations = read_from_shared_memory(_obs_buffer,
self.single_observation_space, n=self.num_envs)
else:
_obs_buffer = None
self.observations = create_empty_array(
self.single_observation_space, n=self.num_envs, fn=np.zeros)
self.parent_pipes, self.processes = [], []
self.error_queue = ctx.Queue()
target = _worker_shared_memory if self.shared_memory else _worker
with clear_mpi_env_vars():
for idx, env_fn in enumerate(self.env_fns):
parent_pipe, child_pipe = ctx.Pipe()
process = ctx.Process(target=target,
name='Worker<{0}>-{1}'.format(type(self).__name__, idx),
args=(idx, CloudpickleWrapper(env_fn), child_pipe,
parent_pipe, _obs_buffer, self.error_queue))
self.parent_pipes.append(parent_pipe)
self.processes.append(process)
process.deamon = True
process.start()
child_pipe.close()
self._state = AsyncState.DEFAULT
self._check_observation_spaces()
def seed(self, seeds=None):
"""
Parameters
----------
seeds : list of int, or int, optional
Random seed for each individual environment. If `seeds` is a list of
length `num_envs`, then the items of the list are chosen as random
seeds. If `seeds` is an int, then each environment uses the random
seed `seeds + n`, where `n` is the index of the environment (between
`0` and `num_envs - 1`).
"""
self._assert_is_running()
if seeds is None:
seeds = [None for _ in range(self.num_envs)]
if isinstance(seeds, int):
seeds = [seeds + i for i in range(self.num_envs)]
assert len(seeds) == self.num_envs
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError('Calling `seed` while waiting '
'for a pending call to `{0}` to complete.'.format(
self._state.value), self._state.value)
for pipe, seed in zip(self.parent_pipes, seeds):
pipe.send(('seed', seed))
for pipe in self.parent_pipes:
pipe.recv()
def reset_async(self):
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError('Calling `reset_async` while waiting '
'for a pending call to `{0}` to complete'.format(
self._state.value), self._state.value)
for pipe in self.parent_pipes:
pipe.send(('reset', None))
self._state = AsyncState.WAITING_RESET
def reset_wait(self, timeout=None):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `reset_wait` times out. If
`None`, the call to `reset_wait` never times out.
Returns
-------
observations : sample from `observation_space`
A batch of observations from the vectorized environment.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_RESET:
raise NoAsyncCallError('Calling `reset_wait` without any prior '
'call to `reset_async`.', AsyncState.WAITING_RESET.value)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
raise mp.TimeoutError('The call to `reset_wait` has timed out after '
'{0} second{1}.'.format(timeout, 's' if timeout > 1 else ''))
self._raise_if_errors()
observations_list = [pipe.recv() for pipe in self.parent_pipes]
self._state = AsyncState.DEFAULT
if not self.shared_memory:
concatenate(observations_list, self.observations,
self.single_observation_space)
return deepcopy(self.observations) if self.copy else self.observations
def step_async(self, actions):
"""
Parameters
----------
actions : iterable of samples from `action_space`
List of actions.
"""
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError('Calling `step_async` while waiting '
'for a pending call to `{0}` to complete.'.format(
self._state.value), self._state.value)
for pipe, action in zip(self.parent_pipes, actions):
pipe.send(('step', action))
self._state = AsyncState.WAITING_STEP
def step_wait(self, timeout=None):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `step_wait` times out. If
`None`, the call to `step_wait` never times out.
Returns
-------
observations : sample from `observation_space`
A batch of observations from the vectorized environment.
rewards : `np.ndarray` instance (dtype `np.float_`)
A vector of rewards from the vectorized environment.
dones : `np.ndarray` instance (dtype `np.bool_`)
A vector whose entries indicate whether the episode has ended.
infos : list of dict
A list of auxiliary diagnostic informations.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_STEP:
raise NoAsyncCallError('Calling `step_wait` without any prior call '
'to `step_async`.', AsyncState.WAITING_STEP.value)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
raise mp.TimeoutError('The call to `step_wait` has timed out after '
'{0} second{1}.'.format(timeout, 's' if timeout > 1 else ''))
self._raise_if_errors()
results = [pipe.recv() for pipe in self.parent_pipes]
self._state = AsyncState.DEFAULT
observations_list, rewards, dones, infos = zip(*results)
if not self.shared_memory:
concatenate(observations_list, self.observations,
self.single_observation_space)
return (deepcopy(self.observations) if self.copy else self.observations,
np.array(rewards), np.array(dones, dtype=np.bool_), infos)
def close(self, timeout=None, terminate=False):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `close` times out. If `None`,
the call to `close` never times out. If the call to `close` times
out, then all processes are terminated.
terminate : bool (default: `False`)
If `True`, then the `close` operation is forced and all processes
are terminated.
"""
if self.closed:
return
if self.viewer is not None:
self.viewer.close()
timeout = 0 if terminate else timeout
try:
if self._state != AsyncState.DEFAULT:
logger.warn('Calling `close` while waiting for a pending '
'call to `{0}` to complete.'.format(self._state.value))
function = getattr(self, '{0}_wait'.format(self._state.value))
function(timeout)
except mp.TimeoutError:
terminate = True
if terminate:
for process in self.processes:
if process.is_alive():
process.terminate()
else:
for pipe in self.parent_pipes:
if not pipe.closed:
pipe.send(('close', None))
for pipe in self.parent_pipes:
if not pipe.closed:
pipe.recv()
for pipe in self.parent_pipes:
pipe.close()
for process in self.processes:
process.join()
self.closed = True
def _poll(self, timeout=None):
self._assert_is_running()
if timeout is not None:
end_time = time.time() + timeout
delta = None
for pipe in self.parent_pipes:
if timeout is not None:
delta = max(end_time - time.time(), 0)
if pipe.closed or (not pipe.poll(delta)):
break
else:
return True
return False
def _check_observation_spaces(self):
self._assert_is_running()
for pipe in self.parent_pipes:
pipe.send(('_check_observation_space', self.single_observation_space))
if not all([pipe.recv() for pipe in self.parent_pipes]):
raise RuntimeError('Some environments have an observation space '
'different from `{0}`. In order to batch observations, the '
'observation spaces from all environments must be '
'equal.'.format(self.single_observation_space))
def _assert_is_running(self):
if self.closed:
raise ClosedEnvironmentError('Trying to operate on `{0}`, after a '
'call to `close()`.'.format(type(self).__name__))
def _raise_if_errors(self):
if not self.error_queue.empty():
while not self.error_queue.empty():
index, exctype, value = self.error_queue.get()
logger.error('Received the following error from Worker-{0}: '
'{1}: {2}'.format(index, exctype.__name__, value))
logger.error('Shutting down Worker-{0}.'.format(index))
self.parent_pipes[index].close()
self.parent_pipes[index] = None
logger.error('Raising the last exception back to the main process.')
raise exctype(value)
def __del__(self):
if hasattr(self, 'closed'):
if not self.closed:
self.close(terminate=True)
def _worker(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is None
env = env_fn()
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
if command == 'reset':
observation = env.reset()
pipe.send(observation)
elif command == 'step':
observation, reward, done, info = env.step(data)
if done:
observation = env.reset()
pipe.send((observation, reward, done, info))
elif command == 'seed':
env.seed(data)
pipe.send(None)
elif command == 'close':
pipe.send(None)
break
elif command == '_check_observation_space':
pipe.send(data == env.observation_space)
else:
raise RuntimeError('Received unknown command `{0}`. Must '
'be one of {`reset`, `step`, `seed`, `close`, '
'`_check_observation_space`}.'.format(command))
except Exception:
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send(None)
finally:
env.close()
def _worker_shared_memory(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is not None
env = env_fn()
observation_space = env.observation_space
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
if command == 'reset':
observation = env.reset()
write_to_shared_memory(index, observation, shared_memory,
observation_space)
pipe.send(None)
elif command == 'step':
observation, reward, done, info = env.step(data)
if done:
observation = env.reset()
write_to_shared_memory(index, observation, shared_memory,
observation_space)
pipe.send((None, reward, done, info))
elif command == 'seed':
env.seed(data)
pipe.send(None)
elif command == 'close':
pipe.send(None)
break
elif command == '_check_observation_space':
pipe.send(data == observation_space)
else:
raise RuntimeError('Received unknown command `{0}`. Must '
'be one of {`reset`, `step`, `seed`, `close`, '
'`_check_observation_space`}.'.format(command))
except Exception:
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send(None)
finally:
env.close()