Files
Gymnasium/gym/vector/tests/test_numpy_utils.py
Tristan Deleu c6a97e17ee Vectorized environments (#1513)
* Initial version of vectorized environments

* Raise an exception in the main process if child process raises an exception

* Add list of exposed functions in vector module

* Use deepcopy instead of np.copy

* Add documentation for vector utils

* Add tests for copy in AsyncVectorEnv

* Add example in documentation for batch_space

* Add cloudpickle dependency in setup.py

* Fix __del__ in VectorEnv

* Check if all observation spaces are equal in AsyncVectorEnv

* Check if all observation spaces are equal in SyncVectorEnv

* Fix spaces non equality in SyncVectorEnv for Python 2

* Handle None parameter in create_empty_array

* Fix check_observation_space with spaces equality

* Raise an exception when operations are out of order in AsyncVectorEnv

* Add version requirement for cloudpickle

* Use a state instead of binary flags in AsyncVectorEnv

* Use numpy.zeros when initializing observations in vectorized environments

* Remove poll from public API in AsyncVectorEnv

* Remove close_extras from VectorEnv

* Add test between AsyncVectorEnv and SyncVectorEnv

* Remove close in check_observation_space

* Add documentation for seed and close

* Refactor exceptions for AsyncVectorEnv

* Close pipes if the environment raises an error

* Add tests for out of order operations

* Change default argument in create_empty_array to np.zeros

* Add get_attr and set_attr methods to VectorEnv

* Improve consistency in SyncVectorEnv
2019-06-21 14:29:44 -07:00

142 lines
4.9 KiB
Python

import pytest
import numpy as np
from collections import OrderedDict
from gym.spaces import Tuple, Dict
from gym.vector.utils.spaces import _BaseGymSpaces
from gym.vector.tests.utils import spaces
from gym.vector.utils.numpy_utils import concatenate, create_empty_array
@pytest.mark.parametrize('space', spaces,
ids=[space.__class__.__name__ for space in spaces])
def test_concatenate(space):
def assert_type(lhs, rhs, n):
# Special case: if rhs is a list of scalars, lhs must be an np.ndarray
if np.isscalar(rhs[0]):
assert isinstance(lhs, np.ndarray)
assert all([np.isscalar(rhs[i]) for i in range(n)])
else:
assert all([isinstance(rhs[i], type(lhs)) for i in range(n)])
def assert_nested_equal(lhs, rhs, n):
assert isinstance(rhs, list)
assert (n > 0) and (len(rhs) == n)
assert_type(lhs, rhs, n)
if isinstance(lhs, np.ndarray):
assert lhs.shape[0] == n
for i in range(n):
assert np.all(lhs[i] == rhs[i])
elif isinstance(lhs, tuple):
for i in range(len(lhs)):
rhs_T_i = [rhs[j][i] for j in range(n)]
assert_nested_equal(lhs[i], rhs_T_i, n)
elif isinstance(lhs, OrderedDict):
for key in lhs.keys():
rhs_T_key = [rhs[j][key] for j in range(n)]
assert_nested_equal(lhs[key], rhs_T_key, n)
else:
raise TypeError('Got unknown type `{0}`.'.format(type(lhs)))
samples = [space.sample() for _ in range(8)]
array = create_empty_array(space, n=8)
concatenated = concatenate(samples, array, space)
assert np.all(concatenated == array)
assert_nested_equal(array, samples, n=8)
@pytest.mark.parametrize('n', [1, 8])
@pytest.mark.parametrize('space', spaces,
ids=[space.__class__.__name__ for space in spaces])
def test_create_empty_array(space, n):
def assert_nested_type(arr, space, n):
if isinstance(space, _BaseGymSpaces):
assert isinstance(arr, np.ndarray)
assert arr.dtype == space.dtype
assert arr.shape == (n,) + space.shape
elif isinstance(space, Tuple):
assert isinstance(arr, tuple)
assert len(arr) == len(space.spaces)
for i in range(len(arr)):
assert_nested_type(arr[i], space.spaces[i], n)
elif isinstance(space, Dict):
assert isinstance(arr, OrderedDict)
assert set(arr.keys()) ^ set(space.spaces.keys()) == set()
for key in arr.keys():
assert_nested_type(arr[key], space.spaces[key], n)
else:
raise TypeError('Got unknown type `{0}`.'.format(type(arr)))
array = create_empty_array(space, n=n, fn=np.empty)
assert_nested_type(array, space, n=n)
@pytest.mark.parametrize('n', [1, 8])
@pytest.mark.parametrize('space', spaces,
ids=[space.__class__.__name__ for space in spaces])
def test_create_empty_array_zeros(space, n):
def assert_nested_type(arr, space, n):
if isinstance(space, _BaseGymSpaces):
assert isinstance(arr, np.ndarray)
assert arr.dtype == space.dtype
assert arr.shape == (n,) + space.shape
assert np.all(arr == 0)
elif isinstance(space, Tuple):
assert isinstance(arr, tuple)
assert len(arr) == len(space.spaces)
for i in range(len(arr)):
assert_nested_type(arr[i], space.spaces[i], n)
elif isinstance(space, Dict):
assert isinstance(arr, OrderedDict)
assert set(arr.keys()) ^ set(space.spaces.keys()) == set()
for key in arr.keys():
assert_nested_type(arr[key], space.spaces[key], n)
else:
raise TypeError('Got unknown type `{0}`.'.format(type(arr)))
array = create_empty_array(space, n=n, fn=np.zeros)
assert_nested_type(array, space, n=n)
@pytest.mark.parametrize('space', spaces,
ids=[space.__class__.__name__ for space in spaces])
def test_create_empty_array_none_shape_ones(space):
def assert_nested_type(arr, space):
if isinstance(space, _BaseGymSpaces):
assert isinstance(arr, np.ndarray)
assert arr.dtype == space.dtype
assert arr.shape == space.shape
assert np.all(arr == 1)
elif isinstance(space, Tuple):
assert isinstance(arr, tuple)
assert len(arr) == len(space.spaces)
for i in range(len(arr)):
assert_nested_type(arr[i], space.spaces[i])
elif isinstance(space, Dict):
assert isinstance(arr, OrderedDict)
assert set(arr.keys()) ^ set(space.spaces.keys()) == set()
for key in arr.keys():
assert_nested_type(arr[key], space.spaces[key])
else:
raise TypeError('Got unknown type `{0}`.'.format(type(arr)))
array = create_empty_array(space, n=None, fn=np.ones)
assert_nested_type(array, space)