mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 06:07:08 +00:00
* Initial version of vectorized environments * Raise an exception in the main process if child process raises an exception * Add list of exposed functions in vector module * Use deepcopy instead of np.copy * Add documentation for vector utils * Add tests for copy in AsyncVectorEnv * Add example in documentation for batch_space * Add cloudpickle dependency in setup.py * Fix __del__ in VectorEnv * Check if all observation spaces are equal in AsyncVectorEnv * Check if all observation spaces are equal in SyncVectorEnv * Fix spaces non equality in SyncVectorEnv for Python 2 * Handle None parameter in create_empty_array * Fix check_observation_space with spaces equality * Raise an exception when operations are out of order in AsyncVectorEnv * Add version requirement for cloudpickle * Use a state instead of binary flags in AsyncVectorEnv * Use numpy.zeros when initializing observations in vectorized environments * Remove poll from public API in AsyncVectorEnv * Remove close_extras from VectorEnv * Add test between AsyncVectorEnv and SyncVectorEnv * Remove close in check_observation_space * Add documentation for seed and close * Refactor exceptions for AsyncVectorEnv * Close pipes if the environment raises an error * Add tests for out of order operations * Change default argument in create_empty_array to np.zeros * Add get_attr and set_attr methods to VectorEnv * Improve consistency in SyncVectorEnv
69 lines
2.1 KiB
Python
69 lines
2.1 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
from gym.spaces import Box
|
|
from gym.vector.tests.utils import make_env
|
|
|
|
from gym.vector.sync_vector_env import SyncVectorEnv
|
|
|
|
def test_create_sync_vector_env():
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
try:
|
|
env = SyncVectorEnv(env_fns)
|
|
finally:
|
|
env.close()
|
|
|
|
assert env.num_envs == 8
|
|
|
|
|
|
def test_reset_sync_vector_env():
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
try:
|
|
env = SyncVectorEnv(env_fns)
|
|
observations = env.reset()
|
|
finally:
|
|
env.close()
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
assert isinstance(observations, np.ndarray)
|
|
assert observations.dtype == env.observation_space.dtype
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
|
def test_step_sync_vector_env():
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
try:
|
|
env = SyncVectorEnv(env_fns)
|
|
observations = env.reset()
|
|
actions = [env.single_action_space.sample() for _ in range(8)]
|
|
observations, rewards, dones, _ = env.step(actions)
|
|
finally:
|
|
env.close()
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
assert isinstance(observations, np.ndarray)
|
|
assert observations.dtype == env.observation_space.dtype
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
assert isinstance(rewards, np.ndarray)
|
|
assert isinstance(rewards[0], (float, np.floating))
|
|
assert rewards.ndim == 1
|
|
assert rewards.size == 8
|
|
|
|
assert isinstance(dones, np.ndarray)
|
|
assert dones.dtype == np.bool_
|
|
assert dones.ndim == 1
|
|
assert dones.size == 8
|
|
|
|
|
|
def test_check_observations_sync_vector_env():
|
|
# CubeCrash-v0 - observation_space: Box(40, 32, 3)
|
|
env_fns = [make_env('CubeCrash-v0', i) for i in range(8)]
|
|
# MemorizeDigits-v0 - observation_space: Box(24, 32, 3)
|
|
env_fns[1] = make_env('MemorizeDigits-v0', 1)
|
|
with pytest.raises(RuntimeError):
|
|
env = SyncVectorEnv(env_fns)
|
|
env.close()
|