mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 06:07:08 +00:00
* Initial version of vectorized environments * Raise an exception in the main process if child process raises an exception * Add list of exposed functions in vector module * Use deepcopy instead of np.copy * Add documentation for vector utils * Add tests for copy in AsyncVectorEnv * Add example in documentation for batch_space * Add cloudpickle dependency in setup.py * Fix __del__ in VectorEnv * Check if all observation spaces are equal in AsyncVectorEnv * Check if all observation spaces are equal in SyncVectorEnv * Fix spaces non equality in SyncVectorEnv for Python 2 * Handle None parameter in create_empty_array * Fix check_observation_space with spaces equality * Raise an exception when operations are out of order in AsyncVectorEnv * Add version requirement for cloudpickle * Use a state instead of binary flags in AsyncVectorEnv * Use numpy.zeros when initializing observations in vectorized environments * Remove poll from public API in AsyncVectorEnv * Remove close_extras from VectorEnv * Add test between AsyncVectorEnv and SyncVectorEnv * Remove close in check_observation_space * Add documentation for seed and close * Refactor exceptions for AsyncVectorEnv * Close pipes if the environment raises an error * Add tests for out of order operations * Change default argument in create_empty_array to np.zeros * Add get_attr and set_attr methods to VectorEnv * Improve consistency in SyncVectorEnv
60 lines
1.6 KiB
Python
60 lines
1.6 KiB
Python
import gym
|
|
from gym.spaces import Tuple
|
|
from gym.vector.utils.spaces import batch_space
|
|
|
|
__all__ = ['VectorEnv']
|
|
|
|
|
|
class VectorEnv(gym.Env):
|
|
"""Base class for vectorized environments.
|
|
|
|
Parameters
|
|
----------
|
|
num_envs : int
|
|
Number of environments in the vectorized environment.
|
|
|
|
observation_space : `gym.spaces.Space` instance
|
|
Observation space of a single environment.
|
|
|
|
action_space : `gym.spaces.Space` instance
|
|
Action space of a single environment.
|
|
"""
|
|
def __init__(self, num_envs, observation_space, action_space):
|
|
super(VectorEnv, self).__init__()
|
|
self.num_envs = num_envs
|
|
self.observation_space = batch_space(observation_space, n=num_envs)
|
|
self.action_space = Tuple((action_space,) * num_envs)
|
|
|
|
self.closed = False
|
|
self.viewer = None
|
|
|
|
# The observation and action spaces of a single environment are
|
|
# kept in separate properties
|
|
self.single_observation_space = observation_space
|
|
self.single_action_space = action_space
|
|
|
|
def reset_async(self):
|
|
pass
|
|
|
|
def reset_wait(self, **kwargs):
|
|
raise NotImplementedError()
|
|
|
|
def reset(self):
|
|
self.reset_async()
|
|
return self.reset_wait()
|
|
|
|
def step_async(self, actions):
|
|
pass
|
|
|
|
def step_wait(self, **kwargs):
|
|
raise NotImplementedError()
|
|
|
|
def step(self, actions):
|
|
self.step_async(actions)
|
|
return self.step_wait()
|
|
|
|
def __del__(self):
|
|
if hasattr(self, 'closed'):
|
|
if not self.closed:
|
|
self.close()
|