mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-29 17:45:07 +00:00
* Initial commit * Remove unnecessary `warnings.simplefilters` * Fix tests for new step API * Fix testing Co-authored-by: Markus28 <montcyril@gmail.com>
126 lines
4.1 KiB
Python
126 lines
4.1 KiB
Python
"""Tests for the pixel observation wrapper."""
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import gym
|
|
from gym import spaces
|
|
from gym.wrappers.pixel_observation import STATE_KEY, PixelObservationWrapper
|
|
|
|
|
|
class FakeEnvironment(gym.Env):
|
|
def __init__(self, render_mode="single_rgb_array"):
|
|
self.action_space = spaces.Box(shape=(1,), low=-1, high=1, dtype=np.float32)
|
|
self.render_mode = render_mode
|
|
|
|
def render(self, mode="human", width=32, height=32):
|
|
image_shape = (height, width, 3)
|
|
return np.zeros(image_shape, dtype=np.uint8)
|
|
|
|
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
|
|
super().reset(seed=seed)
|
|
observation = self.observation_space.sample()
|
|
return observation, {}
|
|
|
|
def step(self, action):
|
|
del action
|
|
observation = self.observation_space.sample()
|
|
reward, terminal, info = 0.0, False, {}
|
|
return observation, reward, terminal, info
|
|
|
|
|
|
class FakeArrayObservationEnvironment(FakeEnvironment):
|
|
def __init__(self, *args, **kwargs):
|
|
self.observation_space = spaces.Box(
|
|
shape=(2,), low=-1, high=1, dtype=np.float32
|
|
)
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
class FakeDictObservationEnvironment(FakeEnvironment):
|
|
def __init__(self, *args, **kwargs):
|
|
self.observation_space = spaces.Dict(
|
|
{
|
|
"state": spaces.Box(shape=(2,), low=-1, high=1, dtype=np.float32),
|
|
}
|
|
)
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
@pytest.mark.parametrize("pixels_only", (True, False))
|
|
def test_dict_observation(pixels_only):
|
|
pixel_key = "rgb"
|
|
|
|
env = FakeDictObservationEnvironment()
|
|
|
|
# Make sure we are testing the right environment for the test.
|
|
observation_space = env.observation_space
|
|
assert isinstance(observation_space, spaces.Dict)
|
|
|
|
width, height = (320, 240)
|
|
|
|
# The wrapper should only add one observation.
|
|
wrapped_env = PixelObservationWrapper(
|
|
env,
|
|
pixel_keys=(pixel_key,),
|
|
pixels_only=pixels_only,
|
|
render_kwargs={pixel_key: {"width": width, "height": height}},
|
|
)
|
|
|
|
assert isinstance(wrapped_env.observation_space, spaces.Dict)
|
|
|
|
if pixels_only:
|
|
assert len(wrapped_env.observation_space.spaces) == 1
|
|
assert list(wrapped_env.observation_space.spaces.keys()) == [pixel_key]
|
|
else:
|
|
assert (
|
|
len(wrapped_env.observation_space.spaces)
|
|
== len(observation_space.spaces) + 1
|
|
)
|
|
expected_keys = list(observation_space.spaces.keys()) + [pixel_key]
|
|
assert list(wrapped_env.observation_space.spaces.keys()) == expected_keys
|
|
|
|
# Check that the added space item is consistent with the added observation.
|
|
observation, info = wrapped_env.reset()
|
|
rgb_observation = observation[pixel_key]
|
|
|
|
assert isinstance(info, dict)
|
|
assert rgb_observation.shape == (height, width, 3)
|
|
assert rgb_observation.dtype == np.uint8
|
|
|
|
|
|
@pytest.mark.parametrize("pixels_only", (True, False))
|
|
def test_single_array_observation(pixels_only):
|
|
pixel_key = "depth"
|
|
|
|
env = FakeArrayObservationEnvironment()
|
|
observation_space = env.observation_space
|
|
assert isinstance(observation_space, spaces.Box)
|
|
|
|
wrapped_env = PixelObservationWrapper(
|
|
env, pixel_keys=(pixel_key,), pixels_only=pixels_only
|
|
)
|
|
wrapped_env.observation_space = wrapped_env.observation_space
|
|
assert isinstance(wrapped_env.observation_space, spaces.Dict)
|
|
|
|
if pixels_only:
|
|
assert len(wrapped_env.observation_space.spaces) == 1
|
|
assert list(wrapped_env.observation_space.spaces.keys()) == [pixel_key]
|
|
else:
|
|
assert len(wrapped_env.observation_space.spaces) == 2
|
|
assert list(wrapped_env.observation_space.spaces.keys()) == [
|
|
STATE_KEY,
|
|
pixel_key,
|
|
]
|
|
|
|
observation, info = wrapped_env.reset()
|
|
depth_observation = observation[pixel_key]
|
|
|
|
assert isinstance(info, dict)
|
|
assert depth_observation.shape == (32, 32, 3)
|
|
assert depth_observation.dtype == np.uint8
|
|
|
|
if not pixels_only:
|
|
assert isinstance(observation[STATE_KEY], np.ndarray)
|