Files
Gymnasium/gym/spaces/box.py

60 lines
2.0 KiB
Python

import numpy as np
from .space import Space
class Box(Space):
"""A box in R^n, i.e.each coordinate is bounded.
There are two common use cases:
* Identical bound for each dimension::
>>> Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32)
Box(3, 4)
* Independent bound for each dimension::
>>> Box(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=np.float32)
Box(2,)
"""
def __init__(self, low, high, shape=None, dtype=np.float32):
assert dtype is not None, 'dtype must be explicitly provided. '
self.dtype = np.dtype(dtype)
if shape is None:
assert low.shape == high.shape
self.shape = low.shape
self.low = low
self.high = high
else:
assert np.isscalar(low) and np.isscalar(high)
self.shape = tuple(shape)
self.low = np.full(self.shape, low)
self.high = np.full(self.shape, high)
low = low + np.zeros(shape)
high = high + np.zeros(shape)
self.low = self.low.astype(self.dtype)
self.high = self.high.astype(self.dtype)
super(Box, self).__init__(self.shape, self.dtype)
def sample(self):
high = self.high if self.dtype.kind == 'f' else self.high.astype('int64') + 1
return self.np_random.uniform(low=self.low, high=high, size=self.shape).astype(self.dtype)
def contains(self, x):
if isinstance(x, list):
x = np.array(x) # Promote list to array for contains check
return x.shape == self.shape and np.all(x >= self.low) and np.all(x <= self.high)
def to_jsonable(self, sample_n):
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n):
return [np.asarray(sample) for sample in sample_n]
def __repr__(self):
return "Box" + str(self.shape)
def __eq__(self, other):
return isinstance(other, Box) and (self.shape == other.shape) and np.allclose(self.low, other.low) and np.allclose(self.high, other.high)