mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-15 19:31:27 +00:00
* Move tests to root with automatic PyCharm import refactoring. This will likely fail some tests * Changed entry point for a registration test env. * Move a stray lunar_lander test to tests/envs/... * black * Change the version from which importlib_metadata is replaced with importlib.metadata. Also requiring installing importlib_metadata for python 3.8 now. ??????????? * Undo last commit
106 lines
3.2 KiB
Python
106 lines
3.2 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
from gym.spaces import Box, MultiDiscrete, Tuple, Dict
|
|
from tests.vector.utils import spaces, custom_spaces, CustomSpace
|
|
|
|
from gym.vector.utils.spaces import batch_space
|
|
|
|
expected_batch_spaces_4 = [
|
|
Box(low=-1.0, high=1.0, shape=(4,), dtype=np.float64),
|
|
Box(low=0.0, high=10.0, shape=(4, 1), dtype=np.float32),
|
|
Box(
|
|
low=np.array(
|
|
[[-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0]]
|
|
),
|
|
high=np.array(
|
|
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
|
|
),
|
|
dtype=np.float32,
|
|
),
|
|
Box(
|
|
low=np.array(
|
|
[
|
|
[[-1.0, 0.0], [0.0, -1.0]],
|
|
[[-1.0, 0.0], [0.0, -1.0]],
|
|
[[-1.0, 0.0], [0.0, -1]],
|
|
[[-1.0, 0.0], [0.0, -1.0]],
|
|
]
|
|
),
|
|
high=np.ones((4, 2, 2)),
|
|
dtype=np.float32,
|
|
),
|
|
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
|
|
Box(low=0, high=255, shape=(4, 32, 32, 3), dtype=np.uint8),
|
|
MultiDiscrete([2, 2, 2, 2]),
|
|
Tuple((MultiDiscrete([3, 3, 3, 3]), MultiDiscrete([5, 5, 5, 5]))),
|
|
Tuple(
|
|
(
|
|
MultiDiscrete([7, 7, 7, 7]),
|
|
Box(
|
|
low=np.array([[0.0, -1.0], [0.0, -1.0], [0.0, -1.0], [0.0, -1]]),
|
|
high=np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]),
|
|
dtype=np.float32,
|
|
),
|
|
)
|
|
),
|
|
Box(
|
|
low=np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]),
|
|
high=np.array([[10, 12, 16], [10, 12, 16], [10, 12, 16], [10, 12, 16]]),
|
|
dtype=np.int64,
|
|
),
|
|
Box(low=0, high=1, shape=(4, 19), dtype=np.int8),
|
|
Dict(
|
|
{
|
|
"position": MultiDiscrete([23, 23, 23, 23]),
|
|
"velocity": Box(low=0.0, high=1.0, shape=(4, 1), dtype=np.float32),
|
|
}
|
|
),
|
|
Dict(
|
|
{
|
|
"position": Dict(
|
|
{
|
|
"x": MultiDiscrete([29, 29, 29, 29]),
|
|
"y": MultiDiscrete([31, 31, 31, 31]),
|
|
}
|
|
),
|
|
"velocity": Tuple(
|
|
(
|
|
MultiDiscrete([37, 37, 37, 37]),
|
|
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
|
|
)
|
|
),
|
|
}
|
|
),
|
|
]
|
|
|
|
expected_custom_batch_spaces_4 = [
|
|
Tuple((CustomSpace(), CustomSpace(), CustomSpace(), CustomSpace())),
|
|
Tuple(
|
|
(
|
|
Tuple((CustomSpace(), CustomSpace(), CustomSpace(), CustomSpace())),
|
|
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
|
|
)
|
|
),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"space,expected_batch_space_4",
|
|
list(zip(spaces, expected_batch_spaces_4)),
|
|
ids=[space.__class__.__name__ for space in spaces],
|
|
)
|
|
def test_batch_space(space, expected_batch_space_4):
|
|
batch_space_4 = batch_space(space, n=4)
|
|
assert batch_space_4 == expected_batch_space_4
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"space,expected_batch_space_4",
|
|
list(zip(custom_spaces, expected_custom_batch_spaces_4)),
|
|
ids=[space.__class__.__name__ for space in custom_spaces],
|
|
)
|
|
def test_batch_space_custom_space(space, expected_batch_space_4):
|
|
batch_space_4 = batch_space(space, n=4)
|
|
assert batch_space_4 == expected_batch_space_4
|