Files
Gymnasium/examples/agents/random_agent.py
John Schulman 4c460ba6c8 Cleanup, removal of unmaintained code (#836)
* add dtype to Box

* remove board_game, debugging, safety, parameter_tuning environments

* massive set of breaking changes
- remove python logging module
- _step, _reset, _seed, _close => non underscored method
- remove benchmark and scoring folder

* Improve render("human"), now resizable, closable window.

* get rid of default step and reset in wrappers, so it doesn’t silently fail for people with underscore methods

* CubeCrash unit test environment

* followup fixes

* MemorizeDigits unit test envrionment

* refactored spaces a bit
fixed indentation
disabled test_env_semantics

* fix unit tests

* fixes

* CubeCrash, MemorizeDigits tested

* gym backwards compatibility patch

* gym backwards compatibility, followup fixes

* changelist, add spaces to main namespaces

* undo_logger_setup for backwards compat

* remove configuration.py
2018-01-25 18:20:14 -08:00

52 lines
1.7 KiB
Python

import argparse
import sys
import gym
from gym import wrappers, logger
class RandomAgent(object):
"""The world's simplest agent!"""
def __init__(self, action_space):
self.action_space = action_space
def act(self, observation, reward, done):
return self.action_space.sample()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=None)
parser.add_argument('env_id', nargs='?', default='CartPole-v0', help='Select the environment to run')
args = parser.parse_args()
# You can set the level to logger.DEBUG or logger.WARN if you
# want to change the amount of output.
logger.set_level(logger.INFO)
env = gym.make(args.env_id)
# You provide the directory to write to (can be an existing
# directory, including one with existing data -- all monitor files
# will be namespaced). You can also dump to a tempdir if you'd
# like: tempfile.mkdtemp().
outdir = '/tmp/random-agent-results'
env = wrappers.Monitor(env, directory=outdir, force=True)
env.seed(0)
agent = RandomAgent(env.action_space)
episode_count = 100
reward = 0
done = False
for i in range(episode_count):
ob = env.reset()
while True:
action = agent.act(ob, reward, done)
ob, reward, done, _ = env.step(action)
if done:
break
# Note there's no env.render() here. But the environment still can open window and
# render if asked by env.monitor: it calls env.render('rgb_array') to record video.
# Video is not recorded every episode, see capped_cubic_video_schedule for details.
# Close the env and write monitor result info to disk
env.close()