Files
Gymnasium/gym/scoreboard/scoring.py
Tom Brown d337f4e571 TimeLimit refactor with Monitor Simplification (#482)
* fix double reset, as suggested by @jietang

* better floors and ceilings

* add convenience methods to monitor

* add wrappers to gym namespace

* allow playing Atari games, with potentially more coming in the future

* simplify example in docs

* Move play out of the Env

* fix tests

* no more deprecation warnings

* remove env.monitor

* monitor simplification

* monitor simplifications

* monitor related fixes

* a few changes suggested by linter

* timestep_limit fixes

* keep track of gym env variables for future compatibility

* timestep_limit => max_episode_timesteps

* don't apply TimeLimit wrapper in make for VNC envs

* Respect old timestep_limit argument

* Pass max_episode_seconds through registration

* Don't include deprecation warnings yet
2017-02-01 13:10:59 -08:00

214 lines
8.5 KiB
Python

"""This is the actual code we use to score people's solutions
server-side. The interfaces here are not yet stable, but we include
them so that people can reproduce our scoring calculations
independently.
We correspondly do not currently import this module.
"""
import os
from collections import defaultdict
import json
import numpy as np
import requests
import gym
def score_from_remote(url):
result = requests.get(url)
parsed = result.json()
episode_lengths = parsed['episode_lengths']
episode_rewards = parsed['episode_rewards']
episode_types = parsed.get('episode_types')
timestamps = parsed['timestamps']
# Handle legacy entries where initial_reset_timestamp wasn't set
initial_reset_timestamp = parsed.get('initial_reset_timestamp', timestamps[0])
env_id = parsed['env_id']
spec = gym.spec(env_id)
return score_from_merged(episode_lengths, episode_rewards, episode_types, timestamps, initial_reset_timestamp, spec.trials, spec.reward_threshold)
def score_from_local(directory):
"""Calculate score from a local results directory"""
results = gym.monitoring.load_results(directory)
# No scores yet saved
if results is None:
return None
episode_lengths = results['episode_lengths']
episode_rewards = results['episode_rewards']
episode_types = results['episode_types']
timestamps = results['timestamps']
initial_reset_timestamp = results['initial_reset_timestamp']
spec = gym.spec(results['env_info']['env_id'])
return score_from_merged(episode_lengths, episode_rewards, episode_types, timestamps, initial_reset_timestamp, spec.trials, spec.reward_threshold)
def score_from_file(json_file):
"""Calculate score from an episode_batch.json file"""
with open(json_file) as f:
results = json.load(f)
# No scores yet saved
if results is None:
return None
episode_lengths = results['episode_lengths']
episode_rewards = results['episode_rewards']
episode_types = results['episode_types']
timestamps = results['timestamps']
initial_reset_timestamp = results['initial_reset_timestamp']
spec = gym.spec(results['env_id'])
return score_from_merged(episode_lengths, episode_rewards, episode_types, timestamps, initial_reset_timestamp, spec.trials, spec.reward_threshold)
def score_from_merged(episode_lengths, episode_rewards, episode_types, timestamps, initial_reset_timestamp, trials, reward_threshold):
"""Method to calculate the score from merged monitor files. Scores
only a single environment; mostly legacy.
"""
if episode_types is not None:
# Select only the training episodes
episode_types = np.array(episode_types)
(t_idx,) = np.where(episode_types == 't')
episode_lengths = np.array(episode_lengths)[t_idx]
episode_rewards = np.array(episode_rewards)[t_idx]
timestamps = np.array(timestamps)[t_idx]
# Make sure everything is a float -- no pesky ints.
episode_rewards = np.array(episode_rewards, dtype='float64')
episode_t_value = timestep_t_value = mean = error = None
seconds_to_solve = seconds_in_total = None
if len(timestamps) > 0:
# This is: time from the first reset to the end of the last episode
seconds_in_total = timestamps[-1] - initial_reset_timestamp
if len(episode_rewards) >= trials:
means = running_mean(episode_rewards, trials)
if reward_threshold is not None:
# Compute t-value by finding the first index at or above
# the threshold. It comes out as a singleton tuple.
(indexes_above_threshold, ) = np.where(means >= reward_threshold)
if len(indexes_above_threshold) > 0:
# Grab the first episode index that is above the threshold value
episode_t_value = indexes_above_threshold[0]
# Find timestep corresponding to this episode
cumulative_timesteps = np.cumsum(np.insert(episode_lengths, 0, 0))
# Convert that into timesteps
timestep_t_value = cumulative_timesteps[episode_t_value]
# This is: time from the first reset to the end of the first solving episode
seconds_to_solve = timestamps[episode_t_value] - initial_reset_timestamp
# Find the window with the best mean
best_idx = np.argmax(means)
best_rewards = episode_rewards[best_idx:best_idx+trials]
mean = np.mean(best_rewards)
if trials == 1: # avoid NaN
error = 0.
else:
error = np.std(best_rewards) / (np.sqrt(trials) - 1)
return {
'episode_t_value': episode_t_value,
'timestep_t_value': timestep_t_value,
'mean': mean,
'error': error,
'number_episodes': len(episode_rewards),
'number_timesteps': sum(episode_lengths),
'seconds_to_solve': seconds_to_solve,
'seconds_in_total': seconds_in_total,
}
def benchmark_score_from_local(benchmark_id, training_dir):
spec = gym.benchmark_spec(benchmark_id)
directories = []
for name, _, files in os.walk(training_dir):
manifests = gym.monitoring.detect_training_manifests(name, files=files)
if manifests:
directories.append(name)
benchmark_results = defaultdict(list)
for training_dir in directories:
results = gym.monitoring.load_results(training_dir)
env_id = results['env_info']['env_id']
benchmark_result = spec.score_evaluation(env_id, results['data_sources'], results['initial_reset_timestamps'], results['episode_lengths'], results['episode_rewards'], results['episode_types'], results['timestamps'])
# from pprint import pprint
# pprint(benchmark_result)
benchmark_results[env_id].append(benchmark_result)
return gym.benchmarks.scoring.benchmark_aggregate_score(spec, benchmark_results)
def benchmark_score_from_merged(benchmark, env_id, episode_lengths, episode_rewards, episode_types):
"""Method to calculate an environment's benchmark score from merged
monitor files.
"""
return benchmark.score(benchmark, env_id, episode_lengths, episode_rewards, episode_types)
def running_mean(x, N):
x = np.array(x, dtype='float64')
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
def compute_graph_stats(episode_lengths, episode_rewards, timestamps, initial_reset_timestamp, buckets):
"""Method to compute the aggregates for the graphs."""
# Not a dependency of OpenAI Gym generally.
import scipy.stats
num_episodes = len(episode_lengths)
# Catch for if no files written which causes error with scipy.stats.binned_statistic
if num_episodes == 0:
return None
episode_rewards = np.array(episode_rewards)
episode_lengths = np.array(episode_lengths)
# The index of the start of each episode
x_timestep = np.cumsum(np.insert(episode_lengths, 0, 0))[:-1]
assert len(x_timestep) == num_episodes
# Delta since the beginning of time
x_seconds = [timestamp - initial_reset_timestamp for timestamp in timestamps]
# The index of each episode
x_episode = range(num_episodes)
# Calculate the appropriate x/y statistics
x_timestep_y_reward = scipy.stats.binned_statistic(x_timestep, episode_rewards, 'mean', buckets)
x_timestep_y_length = scipy.stats.binned_statistic(x_timestep, episode_lengths, 'mean', buckets)
x_episode_y_reward = scipy.stats.binned_statistic(x_episode, episode_rewards, 'mean', buckets)
x_episode_y_length = scipy.stats.binned_statistic(x_episode, episode_lengths, 'mean', buckets)
x_seconds_y_reward = scipy.stats.binned_statistic(x_seconds, episode_rewards, 'mean', buckets)
x_seconds_y_length = scipy.stats.binned_statistic(x_seconds, episode_lengths, 'mean', buckets)
return {
'initial_reset_timestamp': initial_reset_timestamp,
'x_timestep_y_reward': graphable_binned_statistic(x_timestep_y_reward),
'x_timestep_y_length': graphable_binned_statistic(x_timestep_y_length),
'x_episode_y_reward': graphable_binned_statistic(x_episode_y_reward),
'x_episode_y_length': graphable_binned_statistic(x_episode_y_length),
'x_seconds_y_length': graphable_binned_statistic(x_seconds_y_length),
'x_seconds_y_reward': graphable_binned_statistic(x_seconds_y_reward),
}
def graphable_binned_statistic(binned):
x = running_mean(binned.bin_edges, 2)
y = binned.statistic
assert len(x) == len(y)
# Get rid of nasty NaNs
valid = np.logical_not(np.isnan(x)) & np.logical_not(np.isnan(y))
x = x[valid]
y = y[valid]
return {
'x': x,
'y': y,
}