Files
Gymnasium/gym/spaces/box.py
2022-05-31 23:53:13 -04:00

305 lines
11 KiB
Python

"""Implementation of a space that represents closed boxes in euclidean space."""
from typing import Dict, List, Optional, Sequence, SupportsFloat, Tuple, Type, Union
import numpy as np
from gym import logger
from gym.spaces.space import Space
from gym.utils import seeding
def _short_repr(arr: np.ndarray) -> str:
"""Create a shortened string representation of a numpy array.
If arr is a multiple of the all-ones vector, return a string representation of the multiplier.
Otherwise, return a string representation of the entire array.
Args:
arr: The array to represent
Returns:
A short representation of the array
"""
if arr.size != 0 and np.min(arr) == np.max(arr):
return str(np.min(arr))
return str(arr)
class Box(Space[np.ndarray]):
r"""A (possibly unbounded) box in :math:`\mathbb{R}^n`.
Specifically, a Box represents the Cartesian product of n closed intervals.
Each interval has the form of one of :math:`[a, b]`, :math:`(-\infty, b]`,
:math:`[a, \infty)`, or :math:`(-\infty, \infty)`.
There are two common use cases:
* Identical bound for each dimension::
>>> Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32)
Box(3, 4)
* Independent bound for each dimension::
>>> Box(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=np.float32)
Box(2,)
"""
def __init__(
self,
low: Union[SupportsFloat, np.ndarray],
high: Union[SupportsFloat, np.ndarray],
shape: Optional[Sequence[int]] = None,
dtype: Type = np.float32,
seed: Optional[Union[int, seeding.RandomNumberGenerator]] = None,
):
r"""Constructor of :class:`Box`.
The argument ``low`` specifies the lower bound of each dimension and ``high`` specifies the upper bounds.
I.e., the space that is constructed will be the product of the intervals :math:`[\text{low}[i], \text{high}[i]]`.
If ``low`` (or ``high``) is a scalar, the lower bound (or upper bound, respectively) will be assumed to be
this value across all dimensions.
Args:
low (Union[SupportsFloat, np.ndarray]): Lower bounds of the intervals.
high (Union[SupportsFloat, np.ndarray]): Upper bounds of the intervals.
shape (Optional[Sequence[int]]): This only needs to be specified if both ``low`` and ``high`` are scalars and determines the shape of the space.
Otherwise, the shape is inferred from the shape of ``low`` or ``high``.
dtype: The dtype of the elements of the space. If this is an integer type, the :class:`Box` is essentially a discrete space.
seed: Optionally, you can use this argument to seed the RNG that is used to sample from the space.
Raises:
ValueError: If no shape information is provided (shape is None, low is None and high is None) then a
value error is raised.
"""
assert dtype is not None, "dtype must be explicitly provided. "
self.dtype = np.dtype(dtype)
# determine shape if it isn't provided directly
if shape is not None:
shape = tuple(shape)
elif not np.isscalar(low):
shape = low.shape # type: ignore
elif not np.isscalar(high):
shape = high.shape # type: ignore
else:
raise ValueError(
"shape must be provided or inferred from the shapes of low or high"
)
assert isinstance(shape, tuple)
# Capture the boundedness information before replacing np.inf with get_inf
_low = np.full(shape, low, dtype=float) if np.isscalar(low) else low
self.bounded_below = -np.inf < _low # type: ignore
_high = np.full(shape, high, dtype=float) if np.isscalar(high) else high
self.bounded_above = np.inf > _high # type: ignore
low = _broadcast(low, dtype, shape, inf_sign="-") # type: ignore
high = _broadcast(high, dtype, shape, inf_sign="+") # type: ignore
assert isinstance(low, np.ndarray)
assert low.shape == shape, "low.shape doesn't match provided shape"
assert isinstance(high, np.ndarray)
assert high.shape == shape, "high.shape doesn't match provided shape"
self._shape: Tuple[int, ...] = shape
low_precision = get_precision(low.dtype)
high_precision = get_precision(high.dtype)
dtype_precision = get_precision(self.dtype)
if min(low_precision, high_precision) > dtype_precision: # type: ignore
logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
self.low = low.astype(self.dtype)
self.high = high.astype(self.dtype)
self.low_repr = _short_repr(self.low)
self.high_repr = _short_repr(self.high)
super().__init__(self.shape, self.dtype, seed)
@property
def shape(self) -> Tuple[int, ...]:
"""Has stricter type than gym.Space - never None."""
return self._shape
def is_bounded(self, manner: str = "both") -> bool:
"""Checks whether the box is bounded in some sense.
Args:
manner (str): One of ``"both"``, ``"below"``, ``"above"``.
Returns:
If the space is bounded
Raises:
ValueError: If `manner` is neither ``"both"`` nor ``"below"`` or ``"above"``
"""
below = bool(np.all(self.bounded_below))
above = bool(np.all(self.bounded_above))
if manner == "both":
return below and above
elif manner == "below":
return below
elif manner == "above":
return above
else:
raise ValueError("manner is not in {'below', 'above', 'both'}")
def sample(self) -> np.ndarray:
r"""Generates a single random sample inside the Box.
In creating a sample of the box, each coordinate is sampled (independently) from a distribution
that is chosen according to the form of the interval:
* :math:`[a, b]` : uniform distribution
* :math:`[a, \infty)` : shifted exponential distribution
* :math:`(-\infty, b]` : shifted negative exponential distribution
* :math:`(-\infty, \infty)` : normal distribution
Returns:
A sampled value from the Box
"""
high = self.high if self.dtype.kind == "f" else self.high.astype("int64") + 1
sample = np.empty(self.shape)
# Masking arrays which classify the coordinates according to interval
# type
unbounded = ~self.bounded_below & ~self.bounded_above
upp_bounded = ~self.bounded_below & self.bounded_above
low_bounded = self.bounded_below & ~self.bounded_above
bounded = self.bounded_below & self.bounded_above
# Vectorized sampling by interval type
sample[unbounded] = self.np_random.normal(size=unbounded[unbounded].shape)
sample[low_bounded] = (
self.np_random.exponential(size=low_bounded[low_bounded].shape)
+ self.low[low_bounded]
)
sample[upp_bounded] = (
-self.np_random.exponential(size=upp_bounded[upp_bounded].shape)
+ self.high[upp_bounded]
)
sample[bounded] = self.np_random.uniform(
low=self.low[bounded], high=high[bounded], size=bounded[bounded].shape
)
if self.dtype.kind == "i":
sample = np.floor(sample)
return sample.astype(self.dtype)
def contains(self, x) -> bool:
"""Return boolean specifying if x is a valid member of this space."""
if not isinstance(x, np.ndarray):
logger.warn("Casting input x to numpy array.")
x = np.asarray(x, dtype=self.dtype)
return bool(
np.can_cast(x.dtype, self.dtype)
and x.shape == self.shape
and np.all(x >= self.low)
and np.all(x <= self.high)
)
def to_jsonable(self, sample_n):
"""Convert a batch of samples from this space to a JSONable data type."""
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n: Sequence[SupportsFloat]) -> List[np.ndarray]:
"""Convert a JSONable data type to a batch of samples from this space."""
return [np.asarray(sample) for sample in sample_n]
def __repr__(self) -> str:
"""A string representation of this space.
The representation will include bounds, shape and dtype.
If a bound is uniform, only the corresponding scalar will be given to avoid redundant and ugly strings.
Returns:
A representation of the space
"""
return f"Box({self.low_repr}, {self.high_repr}, {self.shape}, {self.dtype})"
def __eq__(self, other) -> bool:
"""Check whether `other` is equivalent to this instance."""
return (
isinstance(other, Box)
and (self.shape == other.shape)
and np.allclose(self.low, other.low)
and np.allclose(self.high, other.high)
)
def __setstate__(self, state: Dict):
"""Sets the state of the box for unpickling a box with legacy support."""
super().__setstate__(state)
# legacy support through re-adding "low_repr" and "high_repr" if missing from pickled state
if not hasattr(self, "low_repr"):
self.low_repr = _short_repr(self.low)
if not hasattr(self, "high_repr"):
self.high_repr = _short_repr(self.high)
def get_inf(dtype, sign: str) -> SupportsFloat:
"""Returns an infinite that doesn't break things.
Args:
dtype: An `np.dtype`
sign (str): must be either `"+"` or `"-"`
Returns:
Gets an infinite value with the sign and dtype
Raises:
TypeError: Unknown sign, use either '+' or '-'
ValueError: Unknown dtype for infinite bounds
"""
if np.dtype(dtype).kind == "f":
if sign == "+":
return np.inf
elif sign == "-":
return -np.inf
else:
raise TypeError(f"Unknown sign {sign}, use either '+' or '-'")
elif np.dtype(dtype).kind == "i":
if sign == "+":
return np.iinfo(dtype).max - 2
elif sign == "-":
return np.iinfo(dtype).min + 2
else:
raise TypeError(f"Unknown sign {sign}, use either '+' or '-'")
else:
raise ValueError(f"Unknown dtype {dtype} for infinite bounds")
def get_precision(dtype) -> SupportsFloat:
"""Get precision of a data type."""
if np.issubdtype(dtype, np.floating):
return np.finfo(dtype).precision
else:
return np.inf
def _broadcast(
value: Union[SupportsFloat, np.ndarray],
dtype,
shape: Tuple[int, ...],
inf_sign: str,
) -> np.ndarray:
"""Handle infinite bounds and broadcast at the same time if needed."""
if np.isscalar(value):
value = get_inf(dtype, inf_sign) if np.isinf(value) else value # type: ignore
value = np.full(shape, value, dtype=dtype)
else:
assert isinstance(value, np.ndarray)
if np.any(np.isinf(value)):
# create new array with dtype, but maintain old one to preserve np.inf
temp = value.astype(dtype)
temp[np.isinf(value)] = get_inf(dtype, inf_sign)
value = temp
return value