Files
Gymnasium/gym/spaces/multi_binary.py
Mark Towers e2266025e6 Pydocstyle utils vector docstring (#2788)
* Added pydocstyle to pre-commit

* Added docstrings for tests and updated the tests for autoreset

* Add pydocstyle exclude folder to allow slowly adding new docstrings

* Add docstrings for setup.py and gym/__init__.py, core.py, error.py and logger.py

* Check that all unwrapped environment are of a particular wrapper type

* Reverted back to import gym.spaces.Space to gym.spaces

* Fixed the __init__.py docstring

* Fixed autoreset autoreset test

* Updated gym __init__.py top docstring

* Fix examples in docstrings

* Add docstrings and type hints where known to all functions and classes in gym/utils and gym/vector

* Remove unnecessary import

* Removed "unused error" and make APIerror deprecated at gym 1.0

* Add pydocstyle description to CONTRIBUTING.md

* Added docstrings section to CONTRIBUTING.md

* Added :meth: and :attr: keywords to docstrings

* Added :meth: and :attr: keywords to docstrings

* Imported annotations from __future__ to fix python 3.7

* Add __future__ import annotations for python 3.7

* isort

* Remove utils and vectors for this PR and spaces for previous PR

* Update gym/envs/classic_control/acrobot.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/envs/classic_control/acrobot.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/envs/classic_control/acrobot.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/spaces/dict.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/env_checker.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/ezpickle.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/ezpickle.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Update gym/utils/play.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Pre-commit

* Updated docstrings with :meth:

* Updated docstrings with :meth:

* Update gym/utils/play.py

* Update gym/utils/play.py

* Update gym/utils/play.py

* Apply suggestions from code review

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* pre-commit

* Update gym/utils/play.py

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Updated fps and zoom parameter docstring

* Update play docstring

* Apply suggestions from code review

Added suggested corrections from @markus28

Co-authored-by: Markus Krimmel <montcyril@gmail.com>

* Pre-commit magic

* Update the `gym.make` docstring with a warning for `env_checker`

* Updated and fixed vector docstrings

* Update test names for reflect the project filename style

Co-authored-by: Markus Krimmel <montcyril@gmail.com>
2022-05-20 09:49:30 -04:00

86 lines
3.1 KiB
Python

"""Implementation of a space that consists of binary np.ndarrays of a fixed shape."""
from __future__ import annotations
from typing import Optional, Sequence, Union
import numpy as np
from gym.spaces.space import Space
from gym.utils import seeding
class MultiBinary(Space[np.ndarray]):
"""An n-shape binary space.
Elements of this space are binary arrays of a shape that is fixed during construction.
Example Usage::
>>> observation_space = MultiBinary(5)
>>> observation_space.sample()
array([0, 1, 0, 1, 0], dtype=int8)
>>> observation_space = MultiBinary([3, 2])
>>> observation_space.sample()
array([[0, 0],
[0, 1],
[1, 1]], dtype=int8)
"""
def __init__(
self,
n: Union[np.ndarray, Sequence[int], int],
seed: Optional[int | seeding.RandomNumberGenerator] = None,
):
"""Constructor of :class:`MultiBinary` space.
Args:
n: This will fix the shape of elements of the space. It can either be an integer (if the space is flat)
or some sort of sequence (tuple, list or np.ndarray) if there are multiple axes.
seed: Optionally, you can use this argument to seed the RNG that is used to sample from the space.
"""
if isinstance(n, (Sequence, np.ndarray)):
self.n = input_n = tuple(int(i) for i in n)
assert (np.asarray(input_n) > 0).all() # n (counts) have to be positive
else:
self.n = n = int(n)
input_n = (n,)
assert (np.asarray(input_n) > 0).all() # n (counts) have to be positive
super().__init__(input_n, np.int8, seed)
@property
def shape(self) -> tuple[int, ...]:
"""Has stricter type than gym.Space - never None."""
return self._shape # type: ignore
def sample(self) -> np.ndarray:
"""Generates a single random sample from this space.
A sample is drawn by independent, fair coin tosses (one toss per binary variable of the space).
"""
return self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype)
def contains(self, x) -> bool:
"""Return boolean specifying if x is a valid member of this space."""
if isinstance(x, Sequence):
x = np.array(x) # Promote list to array for contains check
if self.shape != x.shape:
return False
return ((x == 0) | (x == 1)).all()
def to_jsonable(self, sample_n) -> list:
"""Convert a batch of samples from this space to a JSONable data type."""
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n) -> list:
"""Convert a JSONable data type to a batch of samples from this space."""
return [np.asarray(sample) for sample in sample_n]
def __repr__(self) -> str:
"""Gives a string representation of this space."""
return f"MultiBinary({self.n})"
def __eq__(self, other) -> bool:
"""Check whether `other` is equivalent to this instance."""
return isinstance(other, MultiBinary) and self.n == other.n