mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-31 22:04:31 +00:00
* Added pydocstyle to pre-commit * Added docstrings for tests and updated the tests for autoreset * Add pydocstyle exclude folder to allow slowly adding new docstrings * Add docstrings for setup.py and gym/__init__.py, core.py, error.py and logger.py * Check that all unwrapped environment are of a particular wrapper type * Reverted back to import gym.spaces.Space to gym.spaces * Fixed the __init__.py docstring * Fixed autoreset autoreset test * Updated gym __init__.py top docstring * Fix examples in docstrings * Add docstrings and type hints where known to all functions and classes in gym/utils and gym/vector * Remove unnecessary import * Removed "unused error" and make APIerror deprecated at gym 1.0 * Add pydocstyle description to CONTRIBUTING.md * Added docstrings section to CONTRIBUTING.md * Added :meth: and :attr: keywords to docstrings * Added :meth: and :attr: keywords to docstrings * Imported annotations from __future__ to fix python 3.7 * Add __future__ import annotations for python 3.7 * isort * Remove utils and vectors for this PR and spaces for previous PR * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/spaces/dict.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/ezpickle.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/ezpickle.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/play.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Pre-commit * Updated docstrings with :meth: * Updated docstrings with :meth: * Update gym/utils/play.py * Update gym/utils/play.py * Update gym/utils/play.py * Apply suggestions from code review Co-authored-by: Markus Krimmel <montcyril@gmail.com> * pre-commit * Update gym/utils/play.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Updated fps and zoom parameter docstring * Update play docstring * Apply suggestions from code review Added suggested corrections from @markus28 Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Pre-commit magic * Update the `gym.make` docstring with a warning for `env_checker` * Updated and fixed vector docstrings * Update test names for reflect the project filename style Co-authored-by: Markus Krimmel <montcyril@gmail.com>
174 lines
6.1 KiB
Python
174 lines
6.1 KiB
Python
"""Utility functions for vector environments to share memory between processes."""
|
|
import multiprocessing as mp
|
|
from collections import OrderedDict
|
|
from ctypes import c_bool
|
|
from functools import singledispatch
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
|
|
from gym.error import CustomSpaceError
|
|
from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Space, Tuple
|
|
|
|
__all__ = ["create_shared_memory", "read_from_shared_memory", "write_to_shared_memory"]
|
|
|
|
|
|
@singledispatch
|
|
def create_shared_memory(
|
|
space: Space, n: int = 1, ctx=mp
|
|
) -> Union[dict, tuple, mp.Array]:
|
|
"""Create a shared memory object, to be shared across processes.
|
|
|
|
This eventually contains the observations from the vectorized environment.
|
|
|
|
Args:
|
|
space: Observation space of a single environment in the vectorized environment.
|
|
n: Number of environments in the vectorized environment (i.e. the number of processes).
|
|
ctx: The multiprocess module
|
|
|
|
Returns:
|
|
shared_memory for the shared object across processes.
|
|
"""
|
|
raise CustomSpaceError(
|
|
"Cannot create a shared memory for space with "
|
|
f"type `{type(space)}`. Shared memory only supports "
|
|
"default Gym spaces (e.g. `Box`, `Tuple`, "
|
|
"`Dict`, etc...), and does not support custom "
|
|
"Gym spaces."
|
|
)
|
|
|
|
|
|
@create_shared_memory.register(Box)
|
|
@create_shared_memory.register(Discrete)
|
|
@create_shared_memory.register(MultiDiscrete)
|
|
@create_shared_memory.register(MultiBinary)
|
|
def _create_base_shared_memory(space, n: int = 1, ctx=mp):
|
|
dtype = space.dtype.char
|
|
if dtype in "?":
|
|
dtype = c_bool
|
|
return ctx.Array(dtype, n * int(np.prod(space.shape)))
|
|
|
|
|
|
@create_shared_memory.register(Tuple)
|
|
def _create_tuple_shared_memory(space, n: int = 1, ctx=mp):
|
|
return tuple(
|
|
create_shared_memory(subspace, n=n, ctx=ctx) for subspace in space.spaces
|
|
)
|
|
|
|
|
|
@create_shared_memory.register(Dict)
|
|
def _create_dict_shared_memory(space, n=1, ctx=mp):
|
|
return OrderedDict(
|
|
[
|
|
(key, create_shared_memory(subspace, n=n, ctx=ctx))
|
|
for (key, subspace) in space.spaces.items()
|
|
]
|
|
)
|
|
|
|
|
|
@singledispatch
|
|
def read_from_shared_memory(
|
|
space: Space, shared_memory: Union[dict, tuple, mp.Array], n: int = 1
|
|
) -> Union[dict, tuple, np.ndarray]:
|
|
"""Read the batch of observations from shared memory as a numpy array.
|
|
|
|
..notes::
|
|
The numpy array objects returned by `read_from_shared_memory` shares the
|
|
memory of `shared_memory`. Any changes to `shared_memory` are forwarded
|
|
to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`.
|
|
|
|
Args:
|
|
space: Observation space of a single environment in the vectorized environment.
|
|
shared_memory: Shared object across processes. This contains the observations from the vectorized environment.
|
|
This object is created with `create_shared_memory`.
|
|
n: Number of environments in the vectorized environment (i.e. the number of processes).
|
|
|
|
Returns:
|
|
Batch of observations as a (possibly nested) numpy array.
|
|
|
|
"""
|
|
raise CustomSpaceError(
|
|
"Cannot read from a shared memory for space with "
|
|
f"type `{type(space)}`. Shared memory only supports "
|
|
"default Gym spaces (e.g. `Box`, `Tuple`, "
|
|
"`Dict`, etc...), and does not support custom "
|
|
"Gym spaces."
|
|
)
|
|
|
|
|
|
@read_from_shared_memory.register(Box)
|
|
@read_from_shared_memory.register(Discrete)
|
|
@read_from_shared_memory.register(MultiDiscrete)
|
|
@read_from_shared_memory.register(MultiBinary)
|
|
def _read_base_from_shared_memory(space, shared_memory, n: int = 1):
|
|
return np.frombuffer(shared_memory.get_obj(), dtype=space.dtype).reshape(
|
|
(n,) + space.shape
|
|
)
|
|
|
|
|
|
@read_from_shared_memory.register(Tuple)
|
|
def _read_tuple_from_shared_memory(space, shared_memory, n: int = 1):
|
|
return tuple(
|
|
read_from_shared_memory(subspace, memory, n=n)
|
|
for (memory, subspace) in zip(shared_memory, space.spaces)
|
|
)
|
|
|
|
|
|
@read_from_shared_memory.register(Dict)
|
|
def _read_dict_from_shared_memory(space, shared_memory, n: int = 1):
|
|
return OrderedDict(
|
|
[
|
|
(key, read_from_shared_memory(subspace, shared_memory[key], n=n))
|
|
for (key, subspace) in space.spaces.items()
|
|
]
|
|
)
|
|
|
|
|
|
@singledispatch
|
|
def write_to_shared_memory(
|
|
space: Space,
|
|
index: int,
|
|
value: np.ndarray,
|
|
shared_memory: Union[dict, tuple, mp.Array],
|
|
):
|
|
"""Write the observation of a single environment into shared memory.
|
|
|
|
Args:
|
|
space: Observation space of a single environment in the vectorized environment.
|
|
index: Index of the environment (must be in `[0, num_envs)`).
|
|
value: Observation of the single environment to write to shared memory.
|
|
shared_memory: Shared object across processes. This contains the observations from the vectorized environment. This object is created with `create_shared_memory`.
|
|
"""
|
|
raise CustomSpaceError(
|
|
"Cannot write to a shared memory for space with "
|
|
f"type `{type(space)}`. Shared memory only supports "
|
|
"default Gym spaces (e.g. `Box`, `Tuple`, "
|
|
"`Dict`, etc...), and does not support custom "
|
|
"Gym spaces."
|
|
)
|
|
|
|
|
|
@write_to_shared_memory.register(Box)
|
|
@write_to_shared_memory.register(Discrete)
|
|
@write_to_shared_memory.register(MultiDiscrete)
|
|
@write_to_shared_memory.register(MultiBinary)
|
|
def _write_base_to_shared_memory(space, index, value, shared_memory):
|
|
size = int(np.prod(space.shape))
|
|
destination = np.frombuffer(shared_memory.get_obj(), dtype=space.dtype)
|
|
np.copyto(
|
|
destination[index * size : (index + 1) * size],
|
|
np.asarray(value, dtype=space.dtype).flatten(),
|
|
)
|
|
|
|
|
|
@write_to_shared_memory.register(Tuple)
|
|
def _write_tuple_to_shared_memory(space, index, values, shared_memory):
|
|
for value, memory, subspace in zip(values, shared_memory, space.spaces):
|
|
write_to_shared_memory(subspace, index, value, memory)
|
|
|
|
|
|
@write_to_shared_memory.register(Dict)
|
|
def _write_dict_to_shared_memory(space, index, values, shared_memory):
|
|
for key, subspace in space.spaces.items():
|
|
write_to_shared_memory(subspace, index, values[key], shared_memory[key])
|