Files
Gymnasium/gym/configuration.py
2016-04-27 08:00:58 -07:00

88 lines
2.6 KiB
Python

import hashlib
import numpy as np
import logging
import os
import random
import struct
import sys
import gym
logger = logging.getLogger(__name__)
root_logger = logging.getLogger()
requests_logger = logging.getLogger('requests')
# Set up the default handler
formatter = logging.Formatter('[%(asctime)s] %(message)s')
handler = logging.StreamHandler(sys.stderr)
handler.setFormatter(formatter)
# We need to take in the gym logger explicitly since this is called
# at initialization time.
def logger_setup(gym_logger):
root_logger.addHandler(handler)
gym_logger.setLevel(logging.INFO)
# When set to INFO, this will print out the hostname of every
# connection it makes.
# requests_logger.setLevel(logging.WARN)
def undo_logger_setup():
"""Undoes the automatic logging setup done by OpenAI Gym. You should call
this function if you want to manually configure logging
yourself. Typical usage would involve putting something like the
following at the top of your script:
gym.undo_logger_setup()
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler(sys.stderr))
"""
root_logger.removeHandler(handler)
gym.logger.setLevel(logging.NOTSET)
requests_logger.setLevel(logging.NOTSET)
def seed(a=None):
"""Seeds the 'random' and 'numpy.random' generators. By default,
Python seeds these with the system time. Call this if you are
using multiple processes.
Notes:
SECURITY SENSITIVE: a bug here would allow people to generate fake results. Please let us know if you find one :).
Args:
a (Optional[int, str]): None or no argument seeds from an operating system specific randomness source. If an int or str passed, then all of bits are used.
"""
# Adapted from https://svn.python.org/projects/python/tags/r32/Lib/random.py
if a is None:
a = bigint_from_bytes(os.urandom(32))
if isinstance(a, str):
a = a.encode('utf8')
a += hashlib.sha512(a).digest()
a = bigint_from_bytes(a)
# Actually seed the generators
random.seed(a)
np.random.seed(int_list_from_bigint(a))
return a
# TODO: don't hardcode sizeof_int here
def bigint_from_bytes(bytes):
sizeof_int = 4
padding = sizeof_int - len(bytes) % sizeof_int
bytes += '\0' * padding
int_count = len(bytes) / sizeof_int
unpacked = struct.unpack("{}I".format(int_count), bytes)
accum = 0
for i, val in enumerate(unpacked):
accum += 2 ** (sizeof_int * 8 * i) * val
return accum
def int_list_from_bigint(bigint):
ints = []
while bigint > 0:
bigint, mod = divmod(bigint, 2 ** 32)
ints.append(mod)
return ints