mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 06:07:08 +00:00
88 lines
2.6 KiB
Python
88 lines
2.6 KiB
Python
import hashlib
|
|
import numpy as np
|
|
import logging
|
|
import os
|
|
import random
|
|
import struct
|
|
import sys
|
|
|
|
import gym
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
root_logger = logging.getLogger()
|
|
requests_logger = logging.getLogger('requests')
|
|
|
|
# Set up the default handler
|
|
formatter = logging.Formatter('[%(asctime)s] %(message)s')
|
|
handler = logging.StreamHandler(sys.stderr)
|
|
handler.setFormatter(formatter)
|
|
|
|
# We need to take in the gym logger explicitly since this is called
|
|
# at initialization time.
|
|
def logger_setup(gym_logger):
|
|
root_logger.addHandler(handler)
|
|
gym_logger.setLevel(logging.INFO)
|
|
# When set to INFO, this will print out the hostname of every
|
|
# connection it makes.
|
|
# requests_logger.setLevel(logging.WARN)
|
|
|
|
def undo_logger_setup():
|
|
"""Undoes the automatic logging setup done by OpenAI Gym. You should call
|
|
this function if you want to manually configure logging
|
|
yourself. Typical usage would involve putting something like the
|
|
following at the top of your script:
|
|
|
|
gym.undo_logger_setup()
|
|
logger = logging.getLogger()
|
|
logger.addHandler(logging.StreamHandler(sys.stderr))
|
|
"""
|
|
root_logger.removeHandler(handler)
|
|
gym.logger.setLevel(logging.NOTSET)
|
|
requests_logger.setLevel(logging.NOTSET)
|
|
|
|
def seed(a=None):
|
|
"""Seeds the 'random' and 'numpy.random' generators. By default,
|
|
Python seeds these with the system time. Call this if you are
|
|
using multiple processes.
|
|
|
|
Notes:
|
|
SECURITY SENSITIVE: a bug here would allow people to generate fake results. Please let us know if you find one :).
|
|
|
|
Args:
|
|
a (Optional[int, str]): None or no argument seeds from an operating system specific randomness source. If an int or str passed, then all of bits are used.
|
|
"""
|
|
# Adapted from https://svn.python.org/projects/python/tags/r32/Lib/random.py
|
|
if a is None:
|
|
a = bigint_from_bytes(os.urandom(32))
|
|
|
|
if isinstance(a, str):
|
|
a = a.encode('utf8')
|
|
a += hashlib.sha512(a).digest()
|
|
a = bigint_from_bytes(a)
|
|
|
|
# Actually seed the generators
|
|
random.seed(a)
|
|
np.random.seed(int_list_from_bigint(a))
|
|
|
|
return a
|
|
|
|
# TODO: don't hardcode sizeof_int here
|
|
def bigint_from_bytes(bytes):
|
|
sizeof_int = 4
|
|
padding = sizeof_int - len(bytes) % sizeof_int
|
|
bytes += '\0' * padding
|
|
int_count = len(bytes) / sizeof_int
|
|
unpacked = struct.unpack("{}I".format(int_count), bytes)
|
|
accum = 0
|
|
for i, val in enumerate(unpacked):
|
|
accum += 2 ** (sizeof_int * 8 * i) * val
|
|
return accum
|
|
|
|
def int_list_from_bigint(bigint):
|
|
ints = []
|
|
while bigint > 0:
|
|
bigint, mod = divmod(bigint, 2 ** 32)
|
|
ints.append(mod)
|
|
return ints
|