mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
36 lines
1.3 KiB
Python
36 lines
1.3 KiB
Python
import numpy as np
|
|
from gym import utils
|
|
from gym.envs.mujoco import mujoco_env
|
|
|
|
class HalfCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle):
|
|
def __init__(self):
|
|
mujoco_env.MujocoEnv.__init__(self, 'half_cheetah.xml', 5)
|
|
utils.EzPickle.__init__(self)
|
|
self.finalize()
|
|
|
|
def _step(self, action):
|
|
xposbefore = self.model.data.qpos[0,0]
|
|
self.do_simulation(action, self.frame_skip)
|
|
xposafter = self.model.data.qpos[0,0]
|
|
ob = self._get_obs()
|
|
reward_ctrl = - 0.1 * np.square(action).sum()
|
|
reward_run = (xposafter - xposbefore)/self.dt
|
|
reward = reward_ctrl + reward_run
|
|
done = False
|
|
return ob, reward, done, dict(reward_run = reward_run, reward_ctrl=reward_ctrl)
|
|
|
|
def _get_obs(self):
|
|
return np.concatenate([
|
|
self.model.data.qpos.flat[1:],
|
|
self.model.data.qvel.flat,
|
|
])
|
|
|
|
def _reset(self):
|
|
self.model.data.qpos = self.init_qpos + np.random.uniform(size=(self.model.nq,1),low=-.1,high=.1)
|
|
self.model.data.qvel = self.init_qvel + np.random.randn(self.model.nv,1)*.1
|
|
self.reset_viewer_if_necessary()
|
|
return self._get_obs()
|
|
|
|
def viewer_setup(self):
|
|
self.viewer.cam.distance = self.model.stat.extent * 0.5
|