Files
Gymnasium/gym/envs/mujoco/half_cheetah.py
2016-04-27 08:00:58 -07:00

36 lines
1.3 KiB
Python

import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
class HalfCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(self):
mujoco_env.MujocoEnv.__init__(self, 'half_cheetah.xml', 5)
utils.EzPickle.__init__(self)
self.finalize()
def _step(self, action):
xposbefore = self.model.data.qpos[0,0]
self.do_simulation(action, self.frame_skip)
xposafter = self.model.data.qpos[0,0]
ob = self._get_obs()
reward_ctrl = - 0.1 * np.square(action).sum()
reward_run = (xposafter - xposbefore)/self.dt
reward = reward_ctrl + reward_run
done = False
return ob, reward, done, dict(reward_run = reward_run, reward_ctrl=reward_ctrl)
def _get_obs(self):
return np.concatenate([
self.model.data.qpos.flat[1:],
self.model.data.qvel.flat,
])
def _reset(self):
self.model.data.qpos = self.init_qpos + np.random.uniform(size=(self.model.nq,1),low=-.1,high=.1)
self.model.data.qvel = self.init_qvel + np.random.randn(self.model.nv,1)*.1
self.reset_viewer_if_necessary()
return self._get_obs()
def viewer_setup(self):
self.viewer.cam.distance = self.model.stat.extent * 0.5