Files
Gymnasium/gym/envs/mujoco/swimmer.py
2016-04-27 08:00:58 -07:00

36 lines
1.2 KiB
Python

import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
class SwimmerEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(self):
mujoco_env.MujocoEnv.__init__(self, 'swimmer.xml', 4)
utils.EzPickle.__init__(self)
self.ctrl_cost_coeff = 0.0001
self.finalize()
def _step(self, a):
xposbefore = self.model.data.qpos[0,0]
self.do_simulation(a, self.frame_skip)
xposafter = self.model.data.qpos[0,0]
reward_fwd = (xposafter - xposbefore) / self.dt
reward_ctrl = - self.ctrl_cost_coeff * np.square(a).sum()
reward = reward_fwd + reward_ctrl
ob = self._get_obs()
return ob, reward, False, dict(reward_fwd = reward_fwd, reward_ctrl=reward_ctrl)
def _get_obs(self):
qpos = self.model.data.qpos
qvel = self.model.data.qvel
return np.concatenate([
qpos.flat[2:],
qvel.flat
])
def _reset(self):
self.model.data.qpos = self.init_qpos + np.random.uniform(size=(self.model.nq,1),low=-.1,high=.1)
self.model.data.qvel = self.init_qvel + np.random.uniform(size=(self.model.nv,1),low=-.1,high=.1)
self.reset_viewer_if_necessary()
return self._get_obs()