mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
36 lines
1.2 KiB
Python
36 lines
1.2 KiB
Python
import numpy as np
|
|
from gym import utils
|
|
from gym.envs.mujoco import mujoco_env
|
|
|
|
class SwimmerEnv(mujoco_env.MujocoEnv, utils.EzPickle):
|
|
def __init__(self):
|
|
mujoco_env.MujocoEnv.__init__(self, 'swimmer.xml', 4)
|
|
utils.EzPickle.__init__(self)
|
|
self.ctrl_cost_coeff = 0.0001
|
|
self.finalize()
|
|
|
|
def _step(self, a):
|
|
xposbefore = self.model.data.qpos[0,0]
|
|
self.do_simulation(a, self.frame_skip)
|
|
xposafter = self.model.data.qpos[0,0]
|
|
reward_fwd = (xposafter - xposbefore) / self.dt
|
|
reward_ctrl = - self.ctrl_cost_coeff * np.square(a).sum()
|
|
reward = reward_fwd + reward_ctrl
|
|
ob = self._get_obs()
|
|
return ob, reward, False, dict(reward_fwd = reward_fwd, reward_ctrl=reward_ctrl)
|
|
|
|
|
|
def _get_obs(self):
|
|
qpos = self.model.data.qpos
|
|
qvel = self.model.data.qvel
|
|
return np.concatenate([
|
|
qpos.flat[2:],
|
|
qvel.flat
|
|
])
|
|
|
|
def _reset(self):
|
|
self.model.data.qpos = self.init_qpos + np.random.uniform(size=(self.model.nq,1),low=-.1,high=.1)
|
|
self.model.data.qvel = self.init_qvel + np.random.uniform(size=(self.model.nv,1),low=-.1,high=.1)
|
|
self.reset_viewer_if_necessary()
|
|
return self._get_obs()
|