Files
Gymnasium/gym/envs/classic_control/acrobot.py
Andrea PIERRÉ e913bc81b8 Improve pre-commit workflow (#2602)
* feat: add `isort` to `pre-commit`

* ci: skip `__init__.py` file for `isort`

* ci: make `isort` mandatory in lint pipeline

* docs: add a section on Git hooks

* ci: check isort diff

* fix: isort from master branch

* docs: add pre-commit badge

* ci: update black + bandit versions

* feat: add PR template

* refactor: PR template

* ci: remove bandit

* docs: add Black badge

* ci: try to remove all `|| true` statements

* ci: remove lint_python job

- Remove `lint_python` CI job
- Move `pyupgrade` job to `pre-commit` workflow

* fix: avoid messing with typing

* docs: add a note on running `pre-cpmmit` manually

* ci: apply `pre-commit` to the whole codebase
2022-03-31 15:50:38 -04:00

442 lines
16 KiB
Python

"""classic Acrobot task"""
from typing import Optional
import numpy as np
import pygame
from numpy import cos, pi, sin
from pygame import gfxdraw
from gym import core, spaces
from gym.utils import seeding
__copyright__ = "Copyright 2013, RLPy http://acl.mit.edu/RLPy"
__credits__ = [
"Alborz Geramifard",
"Robert H. Klein",
"Christoph Dann",
"William Dabney",
"Jonathan P. How",
]
__license__ = "BSD 3-Clause"
__author__ = "Christoph Dann <cdann@cdann.de>"
# SOURCE:
# https://github.com/rlpy/rlpy/blob/master/rlpy/Domains/Acrobot.py
class AcrobotEnv(core.Env):
"""
### Description
The Acrobot environment is based on Sutton's work in
["Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding"](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html)
and [Sutton and Barto's book](http://www.incompleteideas.net/book/the-book-2nd.html).
The system consists of two links connected linearly to form a chain, with one end of
the chain fixed. The joint between the two links is actuated. The goal is to apply
torques on the actuated joint to swing the free end of the linear chain above a
given height while starting from the initial state of hanging downwards.
As seen in the **Gif**: two blue links connected by two green joints. The joint in
between the two links is actuated. The goal is to swing the free end of the outer-link
to reach the target height (black horizontal line above system) by applying torque on
the actuator.
### Action Space
The action is discrete, deterministic, and represents the torque applied on the actuated
joint between the two links.
| Num | Action | Unit |
|----|-------------------------------------------|---------------|
| 0 | apply -1 torque to the actuated joint | torque (N m) |
| 1 | apply 0 torque to the actuated joint | torque (N m) |
| 2 | apply 1 torque to the actuated joint | torque (N m) |
### Observation Space
The observation is a `ndarray` with shape `(6,)` that provides information about the
two rotational joint angles as well as their angular velocities:
| Num | Observation | Min | Max |
|-----|-----------------------|----------------------|--------------------|
| 0 | Cosine of `theta1` | -1 | 1 |
| 1 | Sine of `theta1` | -1 | 1 |
| 2 | Cosine of `theta2` | -1 | 1 |
| 3 | Sine of `theta2` | -1 | 1 |
| 4 | Angular velocity of `theta1` | ~ -12.567 (-4 * pi) | ~ 12.567 (4 * pi) |
| 5 | Angular velocity of `theta2` | ~ -28.274 (-9 * pi) | ~ 28.274 (9 * pi) |
where
- `theta1` is the angle of the first joint, where an angle of 0 indicates the first link is pointing directly
downwards.
- `theta2` is ***relative to the angle of the first link.*** An angle of 0 corresponds to having the same angle between the
two links.
The angular velocities of `theta1` and `theta2` are bounded at ±4π, and ±9π rad/s respectively.
A state of `[1, 0, 1, 0, ..., ...]` indicates that both links are pointing downwards.
### Rewards
The goal is to have the free end reach a designated target height in as few steps as possible, and as such all steps that do not reach the goal incur a reward of -1. Achieving the target height results in termination with a reward of 0. The reward threshold is -100.
### Starting State
Each parameter in the underlying state (`theta1`, `theta2`, and the two angular velocities) is initialized
uniformly between -0.1 and 0.1. This means both links are pointing downwards with some initial stochasticity.
### Episode Termination
The episode terminates if one of the following occurs:
1. The free end reaches the target height, which is constructed as:
`-cos(theta1) - cos(theta2 + theta1) > 1.0`
2. Episode length is greater than 500 (200 for v0)
### Arguments
No additional arguments are currently supported.
```
env = gym.make('Acrobot-v1')
```
By default, the dynamics of the acrobot follow those described in Sutton and Barto's book
[Reinforcement Learning: An Introduction](http://incompleteideas.net/book/11/node4.html). However, a `book_or_nips` parameter can be modified to change the pendulum dynamics to those described
in the original [NeurIPS paper](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html).
```
# To change the dynamics as described above
env.env.book_or_nips = 'nips'
```
See the following note and
the [implementation](https://github.com/openai/gym/blob/master/gym/envs/classic_control/acrobot.py) for details:
> The dynamics equations were missing some terms in the NIPS paper which
are present in the book. R. Sutton confirmed in personal correspondence
that the experimental results shown in the paper and the book were
generated with the equations shown in the book.
However, there is the option to run the domain with the paper equations
by setting `book_or_nips = 'nips'`
### Version History
- v1: Maximum number of steps increased from 200 to 500. The observation space for v0 provided direct readings of
`theta1` and `theta2` in radians, having a range of `[-pi, pi]`. The v1 observation space as described here provides the
sine and cosine of each angle instead.
- v0: Initial versions release (1.0.0) (removed from gym for v1)
### References
- Sutton, R. S. (1996). Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding. In D. Touretzky, M. C. Mozer, & M. Hasselmo (Eds.), Advances in Neural Information Processing Systems (Vol. 8). MIT Press. https://proceedings.neurips.cc/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
- Sutton, R. S., Barto, A. G. (2018 ). Reinforcement Learning: An Introduction. The MIT Press.
"""
metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 15}
dt = 0.2
LINK_LENGTH_1 = 1.0 # [m]
LINK_LENGTH_2 = 1.0 # [m]
LINK_MASS_1 = 1.0 #: [kg] mass of link 1
LINK_MASS_2 = 1.0 #: [kg] mass of link 2
LINK_COM_POS_1 = 0.5 #: [m] position of the center of mass of link 1
LINK_COM_POS_2 = 0.5 #: [m] position of the center of mass of link 2
LINK_MOI = 1.0 #: moments of inertia for both links
MAX_VEL_1 = 4 * pi
MAX_VEL_2 = 9 * pi
AVAIL_TORQUE = [-1.0, 0.0, +1]
torque_noise_max = 0.0
SCREEN_DIM = 500
#: use dynamics equations from the nips paper or the book
book_or_nips = "book"
action_arrow = None
domain_fig = None
actions_num = 3
def __init__(self):
self.screen = None
self.clock = None
self.isopen = True
high = np.array(
[1.0, 1.0, 1.0, 1.0, self.MAX_VEL_1, self.MAX_VEL_2], dtype=np.float32
)
low = -high
self.observation_space = spaces.Box(low=low, high=high, dtype=np.float32)
self.action_space = spaces.Discrete(3)
self.state = None
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None
):
super().reset(seed=seed)
self.state = self.np_random.uniform(low=-0.1, high=0.1, size=(4,)).astype(
np.float32
)
if not return_info:
return self._get_ob()
else:
return self._get_ob(), {}
def step(self, a):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
torque = self.AVAIL_TORQUE[a]
# Add noise to the force action
if self.torque_noise_max > 0:
torque += self.np_random.uniform(
-self.torque_noise_max, self.torque_noise_max
)
# Now, augment the state with our force action so it can be passed to
# _dsdt
s_augmented = np.append(s, torque)
ns = rk4(self._dsdt, s_augmented, [0, self.dt])
ns[0] = wrap(ns[0], -pi, pi)
ns[1] = wrap(ns[1], -pi, pi)
ns[2] = bound(ns[2], -self.MAX_VEL_1, self.MAX_VEL_1)
ns[3] = bound(ns[3], -self.MAX_VEL_2, self.MAX_VEL_2)
self.state = ns
terminal = self._terminal()
reward = -1.0 if not terminal else 0.0
return (self._get_ob(), reward, terminal, {})
def _get_ob(self):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
return np.array(
[cos(s[0]), sin(s[0]), cos(s[1]), sin(s[1]), s[2], s[3]], dtype=np.float32
)
def _terminal(self):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
return bool(-cos(s[0]) - cos(s[1] + s[0]) > 1.0)
def _dsdt(self, s_augmented):
m1 = self.LINK_MASS_1
m2 = self.LINK_MASS_2
l1 = self.LINK_LENGTH_1
lc1 = self.LINK_COM_POS_1
lc2 = self.LINK_COM_POS_2
I1 = self.LINK_MOI
I2 = self.LINK_MOI
g = 9.8
a = s_augmented[-1]
s = s_augmented[:-1]
theta1 = s[0]
theta2 = s[1]
dtheta1 = s[2]
dtheta2 = s[3]
d1 = (
m1 * lc1**2
+ m2 * (l1**2 + lc2**2 + 2 * l1 * lc2 * cos(theta2))
+ I1
+ I2
)
d2 = m2 * (lc2**2 + l1 * lc2 * cos(theta2)) + I2
phi2 = m2 * lc2 * g * cos(theta1 + theta2 - pi / 2.0)
phi1 = (
-m2 * l1 * lc2 * dtheta2**2 * sin(theta2)
- 2 * m2 * l1 * lc2 * dtheta2 * dtheta1 * sin(theta2)
+ (m1 * lc1 + m2 * l1) * g * cos(theta1 - pi / 2)
+ phi2
)
if self.book_or_nips == "nips":
# the following line is consistent with the description in the
# paper
ddtheta2 = (a + d2 / d1 * phi1 - phi2) / (m2 * lc2**2 + I2 - d2**2 / d1)
else:
# the following line is consistent with the java implementation and the
# book
ddtheta2 = (
a + d2 / d1 * phi1 - m2 * l1 * lc2 * dtheta1**2 * sin(theta2) - phi2
) / (m2 * lc2**2 + I2 - d2**2 / d1)
ddtheta1 = -(d2 * ddtheta2 + phi1) / d1
return (dtheta1, dtheta2, ddtheta1, ddtheta2, 0.0)
def render(self, mode="human"):
if self.screen is None:
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((self.SCREEN_DIM, self.SCREEN_DIM))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((self.SCREEN_DIM, self.SCREEN_DIM))
self.surf.fill((255, 255, 255))
s = self.state
bound = self.LINK_LENGTH_1 + self.LINK_LENGTH_2 + 0.2 # 2.2 for default
scale = self.SCREEN_DIM / (bound * 2)
offset = self.SCREEN_DIM / 2
if s is None:
return None
p1 = [
-self.LINK_LENGTH_1 * cos(s[0]) * scale,
self.LINK_LENGTH_1 * sin(s[0]) * scale,
]
p2 = [
p1[0] - self.LINK_LENGTH_2 * cos(s[0] + s[1]) * scale,
p1[1] + self.LINK_LENGTH_2 * sin(s[0] + s[1]) * scale,
]
xys = np.array([[0, 0], p1, p2])[:, ::-1]
thetas = [s[0] - pi / 2, s[0] + s[1] - pi / 2]
link_lengths = [self.LINK_LENGTH_1 * scale, self.LINK_LENGTH_2 * scale]
pygame.draw.line(
self.surf,
start_pos=(-2.2 * scale + offset, 1 * scale + offset),
end_pos=(2.2 * scale + offset, 1 * scale + offset),
color=(0, 0, 0),
)
for ((x, y), th, llen) in zip(xys, thetas, link_lengths):
x = x + offset
y = y + offset
l, r, t, b = 0, llen, 0.1 * scale, -0.1 * scale
coords = [(l, b), (l, t), (r, t), (r, b)]
transformed_coords = []
for coord in coords:
coord = pygame.math.Vector2(coord).rotate_rad(th)
coord = (coord[0] + x, coord[1] + y)
transformed_coords.append(coord)
gfxdraw.aapolygon(self.surf, transformed_coords, (0, 204, 204))
gfxdraw.filled_polygon(self.surf, transformed_coords, (0, 204, 204))
gfxdraw.aacircle(self.surf, int(x), int(y), int(0.1 * scale), (204, 204, 0))
gfxdraw.filled_circle(
self.surf, int(x), int(y), int(0.1 * scale), (204, 204, 0)
)
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
if mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
else:
return self.isopen
def close(self):
if self.screen is not None:
pygame.display.quit()
pygame.quit()
self.isopen = False
def wrap(x, m, M):
"""Wraps ``x`` so m <= x <= M; but unlike ``bound()`` which
truncates, ``wrap()`` wraps x around the coordinate system defined by m,M.\n
For example, m = -180, M = 180 (degrees), x = 360 --> returns 0.
Args:
x: a scalar
m: minimum possible value in range
M: maximum possible value in range
Returns:
x: a scalar, wrapped
"""
diff = M - m
while x > M:
x = x - diff
while x < m:
x = x + diff
return x
def bound(x, m, M=None):
"""Either have m as scalar, so bound(x,m,M) which returns m <= x <= M *OR*
have m as length 2 vector, bound(x,m, <IGNORED>) returns m[0] <= x <= m[1].
Args:
x: scalar
Returns:
x: scalar, bound between min (m) and Max (M)
"""
if M is None:
M = m[1]
m = m[0]
# bound x between min (m) and Max (M)
return min(max(x, m), M)
def rk4(derivs, y0, t):
"""
Integrate 1-D or N-D system of ODEs using 4-th order Runge-Kutta.
This is a toy implementation which may be useful if you find
yourself stranded on a system w/o scipy. Otherwise use
:func:`scipy.integrate`.
Args:
derivs: the derivative of the system and has the signature ``dy = derivs(yi)``
y0: initial state vector
t: sample times
args: additional arguments passed to the derivative function
kwargs: additional keyword arguments passed to the derivative function
Example 1 ::
### 2D system
def derivs(x):
d1 = x[0] + 2*x[1]
d2 = -3*x[0] + 4*x[1]
return (d1, d2)
dt = 0.0005
t = arange(0.0, 2.0, dt)
y0 = (1,2)
yout = rk4(derivs6, y0, t)
If you have access to scipy, you should probably be using the
scipy.integrate tools rather than this function.
This would then require re-adding the time variable to the signature of derivs.
Returns:
yout: Runge-Kutta approximation of the ODE
"""
try:
Ny = len(y0)
except TypeError:
yout = np.zeros((len(t),), np.float_)
else:
yout = np.zeros((len(t), Ny), np.float_)
yout[0] = y0
for i in np.arange(len(t) - 1):
this = t[i]
dt = t[i + 1] - this
dt2 = dt / 2.0
y0 = yout[i]
k1 = np.asarray(derivs(y0))
k2 = np.asarray(derivs(y0 + dt2 * k1))
k3 = np.asarray(derivs(y0 + dt2 * k2))
k4 = np.asarray(derivs(y0 + dt * k3))
yout[i + 1] = y0 + dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4)
# We only care about the final timestep and we cleave off action value which will be zero
return yout[-1][:4]