Files
Gymnasium/gym/envs/classic_control/pendulum.py
Andrea PIERRÉ e913bc81b8 Improve pre-commit workflow (#2602)
* feat: add `isort` to `pre-commit`

* ci: skip `__init__.py` file for `isort`

* ci: make `isort` mandatory in lint pipeline

* docs: add a section on Git hooks

* ci: check isort diff

* fix: isort from master branch

* docs: add pre-commit badge

* ci: update black + bandit versions

* feat: add PR template

* refactor: PR template

* ci: remove bandit

* docs: add Black badge

* ci: try to remove all `|| true` statements

* ci: remove lint_python job

- Remove `lint_python` CI job
- Move `pyupgrade` job to `pre-commit` workflow

* fix: avoid messing with typing

* docs: add a note on running `pre-cpmmit` manually

* ci: apply `pre-commit` to the whole codebase
2022-03-31 15:50:38 -04:00

230 lines
7.9 KiB
Python

__credits__ = ["Carlos Luis"]
from os import path
from typing import Optional
import numpy as np
import pygame
from pygame import gfxdraw
import gym
from gym import spaces
from gym.utils import seeding
class PendulumEnv(gym.Env):
"""
### Description
The inverted pendulum swingup problem is based on the classic problem in control theory. The system consists of a pendulum attached at one end to a fixed point, and the other end being free. The pendulum starts in a random position and the goal is to apply torque on the free end to swing it into an upright position, with its center of gravity right above the fixed point.
The diagram below specifies the coordinate system used for the implementation of the pendulum's
dynamic equations.
![Pendulum Coordinate System](./diagrams/pendulum.png)
- `x-y`: cartesian coordinates of the pendulum's end in meters.
- `theta` : angle in radians.
- `tau`: torque in `N m`. Defined as positive _counter-clockwise_.
### Action Space
The action is a `ndarray` with shape `(1,)` representing the torque applied to free end of the pendulum.
| Num | Action | Min | Max |
|-----|--------|------|-----|
| 0 | Torque | -2.0 | 2.0 |
### Observation Space
The observation is a `ndarray` with shape `(3,)` representing the x-y coordinates of the pendulum's free end and its angular velocity.
| Num | Observation | Min | Max |
|-----|------------------|------|-----|
| 0 | x = cos(theta) | -1.0 | 1.0 |
| 1 | y = sin(angle) | -1.0 | 1.0 |
| 2 | Angular Velocity | -8.0 | 8.0 |
### Rewards
The reward function is defined as:
*r = -(theta<sup>2</sup> + 0.1 * theta_dt<sup>2</sup> + 0.001 * torque<sup>2</sup>)*
where `$\theta$` is the pendulum's angle normalized between *[-pi, pi]* (with 0 being in the upright position).
Based on the above equation, the minimum reward that can be obtained is *-(pi<sup>2</sup> + 0.1 * 8<sup>2</sup> + 0.001 * 2<sup>2</sup>) = -16.2736044*, while the maximum reward is zero (pendulum is
upright with zero velocity and no torque applied).
### Starting State
The starting state is a random angle in *[-pi, pi]* and a random angular velocity in *[-1,1]*.
### Episode Termination
The episode terminates at 200 time steps.
### Arguments
- `g`: acceleration of gravity measured in *(m s<sup>-2</sup>)* used to calculate the pendulum dynamics. The default value is g = 10.0 .
```
gym.make('Pendulum-v1', g=9.81)
```
### Version History
* v1: Simplify the math equations, no difference in behavior.
* v0: Initial versions release (1.0.0)
"""
metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 30}
def __init__(self, g=10.0):
self.max_speed = 8
self.max_torque = 2.0
self.dt = 0.05
self.g = g
self.m = 1.0
self.l = 1.0
self.screen = None
self.clock = None
self.isopen = True
self.screen_dim = 500
high = np.array([1.0, 1.0, self.max_speed], dtype=np.float32)
# This will throw a warning in tests/envs/test_envs in utils/env_checker.py as the space is not symmetric
# or normalised as max_torque == 2 by default. Ignoring the issue here as the default settings are too old
# to update to follow the openai gym api
self.action_space = spaces.Box(
low=-self.max_torque, high=self.max_torque, shape=(1,), dtype=np.float32
)
self.observation_space = spaces.Box(low=-high, high=high, dtype=np.float32)
def step(self, u):
th, thdot = self.state # th := theta
g = self.g
m = self.m
l = self.l
dt = self.dt
u = np.clip(u, -self.max_torque, self.max_torque)[0]
self.last_u = u # for rendering
costs = angle_normalize(th) ** 2 + 0.1 * thdot**2 + 0.001 * (u**2)
newthdot = thdot + (3 * g / (2 * l) * np.sin(th) + 3.0 / (m * l**2) * u) * dt
newthdot = np.clip(newthdot, -self.max_speed, self.max_speed)
newth = th + newthdot * dt
self.state = np.array([newth, newthdot])
return self._get_obs(), -costs, False, {}
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None
):
super().reset(seed=seed)
high = np.array([np.pi, 1])
self.state = self.np_random.uniform(low=-high, high=high)
self.last_u = None
if not return_info:
return self._get_obs()
else:
return self._get_obs(), {}
def _get_obs(self):
theta, thetadot = self.state
return np.array([np.cos(theta), np.sin(theta), thetadot], dtype=np.float32)
def render(self, mode="human"):
if self.screen is None:
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((self.screen_dim, self.screen_dim))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((self.screen_dim, self.screen_dim))
self.surf.fill((255, 255, 255))
bound = 2.2
scale = self.screen_dim / (bound * 2)
offset = self.screen_dim // 2
rod_length = 1 * scale
rod_width = 0.2 * scale
l, r, t, b = 0, rod_length, rod_width / 2, -rod_width / 2
coords = [(l, b), (l, t), (r, t), (r, b)]
transformed_coords = []
for c in coords:
c = pygame.math.Vector2(c).rotate_rad(self.state[0] + np.pi / 2)
c = (c[0] + offset, c[1] + offset)
transformed_coords.append(c)
gfxdraw.aapolygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.filled_polygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.aacircle(self.surf, offset, offset, int(rod_width / 2), (204, 77, 77))
gfxdraw.filled_circle(
self.surf, offset, offset, int(rod_width / 2), (204, 77, 77)
)
rod_end = (rod_length, 0)
rod_end = pygame.math.Vector2(rod_end).rotate_rad(self.state[0] + np.pi / 2)
rod_end = (int(rod_end[0] + offset), int(rod_end[1] + offset))
gfxdraw.aacircle(
self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77)
)
gfxdraw.filled_circle(
self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77)
)
fname = path.join(path.dirname(__file__), "assets/clockwise.png")
img = pygame.image.load(fname)
if self.last_u is not None:
scale_img = pygame.transform.smoothscale(
img, (scale * np.abs(self.last_u) / 2, scale * np.abs(self.last_u) / 2)
)
is_flip = bool(self.last_u > 0)
scale_img = pygame.transform.flip(scale_img, is_flip, True)
self.surf.blit(
scale_img,
(
offset - scale_img.get_rect().centerx,
offset - scale_img.get_rect().centery,
),
)
# drawing axle
gfxdraw.aacircle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
gfxdraw.filled_circle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
if mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
else:
return self.isopen
def close(self):
if self.screen is not None:
pygame.display.quit()
pygame.quit()
self.isopen = False
def angle_normalize(x):
return ((x + np.pi) % (2 * np.pi)) - np.pi