mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-31 22:04:31 +00:00
* feat: add `isort` to `pre-commit` * ci: skip `__init__.py` file for `isort` * ci: make `isort` mandatory in lint pipeline * docs: add a section on Git hooks * ci: check isort diff * fix: isort from master branch * docs: add pre-commit badge * ci: update black + bandit versions * feat: add PR template * refactor: PR template * ci: remove bandit * docs: add Black badge * ci: try to remove all `|| true` statements * ci: remove lint_python job - Remove `lint_python` CI job - Move `pyupgrade` job to `pre-commit` workflow * fix: avoid messing with typing * docs: add a note on running `pre-cpmmit` manually * ci: apply `pre-commit` to the whole codebase
232 lines
7.8 KiB
Python
232 lines
7.8 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import Optional, Sequence, SupportsFloat, Tuple, Type, Union
|
|
|
|
import numpy as np
|
|
|
|
from gym import logger
|
|
|
|
from .space import Space
|
|
|
|
|
|
def _short_repr(arr: np.ndarray) -> str:
|
|
"""Create a shortened string representation of a numpy array.
|
|
|
|
If arr is a multiple of the all-ones vector, return a string representation of the multiplier.
|
|
Otherwise, return a string representation of the entire array.
|
|
"""
|
|
if arr.size != 0 and np.min(arr) == np.max(arr):
|
|
return str(np.min(arr))
|
|
return str(arr)
|
|
|
|
|
|
class Box(Space[np.ndarray]):
|
|
"""
|
|
A (possibly unbounded) box in R^n. Specifically, a Box represents the
|
|
Cartesian product of n closed intervals. Each interval has the form of one
|
|
of [a, b], (-oo, b], [a, oo), or (-oo, oo).
|
|
|
|
There are two common use cases:
|
|
|
|
* Identical bound for each dimension::
|
|
>>> Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32)
|
|
Box(3, 4)
|
|
|
|
* Independent bound for each dimension::
|
|
>>> Box(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=np.float32)
|
|
Box(2,)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
low: Union[SupportsFloat, np.ndarray],
|
|
high: Union[SupportsFloat, np.ndarray],
|
|
shape: Optional[Sequence[int]] = None,
|
|
dtype: Type = np.float32,
|
|
seed: Optional[int] = None,
|
|
):
|
|
assert dtype is not None, "dtype must be explicitly provided. "
|
|
self.dtype = np.dtype(dtype)
|
|
|
|
# determine shape if it isn't provided directly
|
|
if shape is not None:
|
|
shape = tuple(shape)
|
|
elif not np.isscalar(low):
|
|
shape = low.shape # type: ignore
|
|
elif not np.isscalar(high):
|
|
shape = high.shape # type: ignore
|
|
else:
|
|
raise ValueError(
|
|
"shape must be provided or inferred from the shapes of low or high"
|
|
)
|
|
assert isinstance(shape, tuple)
|
|
|
|
# Capture the boundedness information before replacing np.inf with get_inf
|
|
_low = np.full(shape, low, dtype=float) if np.isscalar(low) else low
|
|
self.bounded_below = -np.inf < _low
|
|
_high = np.full(shape, high, dtype=float) if np.isscalar(high) else high
|
|
self.bounded_above = np.inf > _high
|
|
|
|
low = _broadcast(low, dtype, shape, inf_sign="-") # type: ignore
|
|
high = _broadcast(high, dtype, shape, inf_sign="+") # type: ignore
|
|
|
|
assert isinstance(low, np.ndarray)
|
|
assert low.shape == shape, "low.shape doesn't match provided shape"
|
|
assert isinstance(high, np.ndarray)
|
|
assert high.shape == shape, "high.shape doesn't match provided shape"
|
|
|
|
self._shape: Tuple[int, ...] = shape
|
|
|
|
low_precision = get_precision(low.dtype)
|
|
high_precision = get_precision(high.dtype)
|
|
dtype_precision = get_precision(self.dtype)
|
|
if min(low_precision, high_precision) > dtype_precision: # type: ignore
|
|
logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
|
|
self.low = low.astype(self.dtype)
|
|
self.high = high.astype(self.dtype)
|
|
|
|
self.low_repr = _short_repr(self.low)
|
|
self.high_repr = _short_repr(self.high)
|
|
|
|
super().__init__(self.shape, self.dtype, seed)
|
|
|
|
@property
|
|
def shape(self) -> Tuple[int, ...]:
|
|
"""Has stricter type than gym.Space - never None."""
|
|
return self._shape
|
|
|
|
def is_bounded(self, manner: str = "both") -> bool:
|
|
below = bool(np.all(self.bounded_below))
|
|
above = bool(np.all(self.bounded_above))
|
|
if manner == "both":
|
|
return below and above
|
|
elif manner == "below":
|
|
return below
|
|
elif manner == "above":
|
|
return above
|
|
else:
|
|
raise ValueError("manner is not in {'below', 'above', 'both'}")
|
|
|
|
def sample(self) -> np.ndarray:
|
|
"""
|
|
Generates a single random sample inside of the Box.
|
|
|
|
In creating a sample of the box, each coordinate is sampled according to
|
|
the form of the interval:
|
|
|
|
* [a, b] : uniform distribution
|
|
* [a, oo) : shifted exponential distribution
|
|
* (-oo, b] : shifted negative exponential distribution
|
|
* (-oo, oo) : normal distribution
|
|
"""
|
|
high = self.high if self.dtype.kind == "f" else self.high.astype("int64") + 1
|
|
sample = np.empty(self.shape)
|
|
|
|
# Masking arrays which classify the coordinates according to interval
|
|
# type
|
|
unbounded = ~self.bounded_below & ~self.bounded_above
|
|
upp_bounded = ~self.bounded_below & self.bounded_above
|
|
low_bounded = self.bounded_below & ~self.bounded_above
|
|
bounded = self.bounded_below & self.bounded_above
|
|
|
|
# Vectorized sampling by interval type
|
|
sample[unbounded] = self.np_random.normal(size=unbounded[unbounded].shape)
|
|
|
|
sample[low_bounded] = (
|
|
self.np_random.exponential(size=low_bounded[low_bounded].shape)
|
|
+ self.low[low_bounded]
|
|
)
|
|
|
|
sample[upp_bounded] = (
|
|
-self.np_random.exponential(size=upp_bounded[upp_bounded].shape)
|
|
+ self.high[upp_bounded]
|
|
)
|
|
|
|
sample[bounded] = self.np_random.uniform(
|
|
low=self.low[bounded], high=high[bounded], size=bounded[bounded].shape
|
|
)
|
|
if self.dtype.kind == "i":
|
|
sample = np.floor(sample)
|
|
|
|
return sample.astype(self.dtype)
|
|
|
|
def contains(self, x) -> bool:
|
|
if not isinstance(x, np.ndarray):
|
|
logger.warn("Casting input x to numpy array.")
|
|
x = np.asarray(x, dtype=self.dtype)
|
|
|
|
return bool(
|
|
np.can_cast(x.dtype, self.dtype)
|
|
and x.shape == self.shape
|
|
and np.all(x >= self.low)
|
|
and np.all(x <= self.high)
|
|
)
|
|
|
|
def to_jsonable(self, sample_n):
|
|
return np.array(sample_n).tolist()
|
|
|
|
def from_jsonable(self, sample_n: Sequence[SupportsFloat]) -> list[np.ndarray]:
|
|
return [np.asarray(sample) for sample in sample_n]
|
|
|
|
def __repr__(self) -> str:
|
|
return f"Box({self.low_repr}, {self.high_repr}, {self.shape}, {self.dtype})"
|
|
|
|
def __eq__(self, other) -> bool:
|
|
return (
|
|
isinstance(other, Box)
|
|
and (self.shape == other.shape)
|
|
and np.allclose(self.low, other.low)
|
|
and np.allclose(self.high, other.high)
|
|
)
|
|
|
|
|
|
def get_inf(dtype, sign: str) -> SupportsFloat:
|
|
"""Returns an infinite that doesn't break things.
|
|
`dtype` must be an `np.dtype`
|
|
`bound` must be either `min` or `max`
|
|
"""
|
|
if np.dtype(dtype).kind == "f":
|
|
if sign == "+":
|
|
return np.inf
|
|
elif sign == "-":
|
|
return -np.inf
|
|
else:
|
|
raise TypeError(f"Unknown sign {sign}, use either '+' or '-'")
|
|
elif np.dtype(dtype).kind == "i":
|
|
if sign == "+":
|
|
return np.iinfo(dtype).max - 2
|
|
elif sign == "-":
|
|
return np.iinfo(dtype).min + 2
|
|
else:
|
|
raise TypeError(f"Unknown sign {sign}, use either '+' or '-'")
|
|
else:
|
|
raise ValueError(f"Unknown dtype {dtype} for infinite bounds")
|
|
|
|
|
|
def get_precision(dtype) -> SupportsFloat:
|
|
if np.issubdtype(dtype, np.floating):
|
|
return np.finfo(dtype).precision
|
|
else:
|
|
return np.inf
|
|
|
|
|
|
def _broadcast(
|
|
value: Union[SupportsFloat, np.ndarray],
|
|
dtype,
|
|
shape: tuple[int, ...],
|
|
inf_sign: str,
|
|
) -> np.ndarray:
|
|
"""handle infinite bounds and broadcast at the same time if needed"""
|
|
if np.isscalar(value):
|
|
value = get_inf(dtype, inf_sign) if np.isinf(value) else value # type: ignore
|
|
value = np.full(shape, value, dtype=dtype)
|
|
else:
|
|
assert isinstance(value, np.ndarray)
|
|
if np.any(np.isinf(value)):
|
|
# create new array with dtype, but maintain old one to preserve np.inf
|
|
temp = value.astype(dtype)
|
|
temp[np.isinf(value)] = get_inf(dtype, inf_sign)
|
|
value = temp
|
|
return value
|