Files
Gymnasium/gym/spaces/box.py
Andrea PIERRÉ e913bc81b8 Improve pre-commit workflow (#2602)
* feat: add `isort` to `pre-commit`

* ci: skip `__init__.py` file for `isort`

* ci: make `isort` mandatory in lint pipeline

* docs: add a section on Git hooks

* ci: check isort diff

* fix: isort from master branch

* docs: add pre-commit badge

* ci: update black + bandit versions

* feat: add PR template

* refactor: PR template

* ci: remove bandit

* docs: add Black badge

* ci: try to remove all `|| true` statements

* ci: remove lint_python job

- Remove `lint_python` CI job
- Move `pyupgrade` job to `pre-commit` workflow

* fix: avoid messing with typing

* docs: add a note on running `pre-cpmmit` manually

* ci: apply `pre-commit` to the whole codebase
2022-03-31 15:50:38 -04:00

232 lines
7.8 KiB
Python

from __future__ import annotations
from typing import Optional, Sequence, SupportsFloat, Tuple, Type, Union
import numpy as np
from gym import logger
from .space import Space
def _short_repr(arr: np.ndarray) -> str:
"""Create a shortened string representation of a numpy array.
If arr is a multiple of the all-ones vector, return a string representation of the multiplier.
Otherwise, return a string representation of the entire array.
"""
if arr.size != 0 and np.min(arr) == np.max(arr):
return str(np.min(arr))
return str(arr)
class Box(Space[np.ndarray]):
"""
A (possibly unbounded) box in R^n. Specifically, a Box represents the
Cartesian product of n closed intervals. Each interval has the form of one
of [a, b], (-oo, b], [a, oo), or (-oo, oo).
There are two common use cases:
* Identical bound for each dimension::
>>> Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32)
Box(3, 4)
* Independent bound for each dimension::
>>> Box(low=np.array([-1.0, -2.0]), high=np.array([2.0, 4.0]), dtype=np.float32)
Box(2,)
"""
def __init__(
self,
low: Union[SupportsFloat, np.ndarray],
high: Union[SupportsFloat, np.ndarray],
shape: Optional[Sequence[int]] = None,
dtype: Type = np.float32,
seed: Optional[int] = None,
):
assert dtype is not None, "dtype must be explicitly provided. "
self.dtype = np.dtype(dtype)
# determine shape if it isn't provided directly
if shape is not None:
shape = tuple(shape)
elif not np.isscalar(low):
shape = low.shape # type: ignore
elif not np.isscalar(high):
shape = high.shape # type: ignore
else:
raise ValueError(
"shape must be provided or inferred from the shapes of low or high"
)
assert isinstance(shape, tuple)
# Capture the boundedness information before replacing np.inf with get_inf
_low = np.full(shape, low, dtype=float) if np.isscalar(low) else low
self.bounded_below = -np.inf < _low
_high = np.full(shape, high, dtype=float) if np.isscalar(high) else high
self.bounded_above = np.inf > _high
low = _broadcast(low, dtype, shape, inf_sign="-") # type: ignore
high = _broadcast(high, dtype, shape, inf_sign="+") # type: ignore
assert isinstance(low, np.ndarray)
assert low.shape == shape, "low.shape doesn't match provided shape"
assert isinstance(high, np.ndarray)
assert high.shape == shape, "high.shape doesn't match provided shape"
self._shape: Tuple[int, ...] = shape
low_precision = get_precision(low.dtype)
high_precision = get_precision(high.dtype)
dtype_precision = get_precision(self.dtype)
if min(low_precision, high_precision) > dtype_precision: # type: ignore
logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
self.low = low.astype(self.dtype)
self.high = high.astype(self.dtype)
self.low_repr = _short_repr(self.low)
self.high_repr = _short_repr(self.high)
super().__init__(self.shape, self.dtype, seed)
@property
def shape(self) -> Tuple[int, ...]:
"""Has stricter type than gym.Space - never None."""
return self._shape
def is_bounded(self, manner: str = "both") -> bool:
below = bool(np.all(self.bounded_below))
above = bool(np.all(self.bounded_above))
if manner == "both":
return below and above
elif manner == "below":
return below
elif manner == "above":
return above
else:
raise ValueError("manner is not in {'below', 'above', 'both'}")
def sample(self) -> np.ndarray:
"""
Generates a single random sample inside of the Box.
In creating a sample of the box, each coordinate is sampled according to
the form of the interval:
* [a, b] : uniform distribution
* [a, oo) : shifted exponential distribution
* (-oo, b] : shifted negative exponential distribution
* (-oo, oo) : normal distribution
"""
high = self.high if self.dtype.kind == "f" else self.high.astype("int64") + 1
sample = np.empty(self.shape)
# Masking arrays which classify the coordinates according to interval
# type
unbounded = ~self.bounded_below & ~self.bounded_above
upp_bounded = ~self.bounded_below & self.bounded_above
low_bounded = self.bounded_below & ~self.bounded_above
bounded = self.bounded_below & self.bounded_above
# Vectorized sampling by interval type
sample[unbounded] = self.np_random.normal(size=unbounded[unbounded].shape)
sample[low_bounded] = (
self.np_random.exponential(size=low_bounded[low_bounded].shape)
+ self.low[low_bounded]
)
sample[upp_bounded] = (
-self.np_random.exponential(size=upp_bounded[upp_bounded].shape)
+ self.high[upp_bounded]
)
sample[bounded] = self.np_random.uniform(
low=self.low[bounded], high=high[bounded], size=bounded[bounded].shape
)
if self.dtype.kind == "i":
sample = np.floor(sample)
return sample.astype(self.dtype)
def contains(self, x) -> bool:
if not isinstance(x, np.ndarray):
logger.warn("Casting input x to numpy array.")
x = np.asarray(x, dtype=self.dtype)
return bool(
np.can_cast(x.dtype, self.dtype)
and x.shape == self.shape
and np.all(x >= self.low)
and np.all(x <= self.high)
)
def to_jsonable(self, sample_n):
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n: Sequence[SupportsFloat]) -> list[np.ndarray]:
return [np.asarray(sample) for sample in sample_n]
def __repr__(self) -> str:
return f"Box({self.low_repr}, {self.high_repr}, {self.shape}, {self.dtype})"
def __eq__(self, other) -> bool:
return (
isinstance(other, Box)
and (self.shape == other.shape)
and np.allclose(self.low, other.low)
and np.allclose(self.high, other.high)
)
def get_inf(dtype, sign: str) -> SupportsFloat:
"""Returns an infinite that doesn't break things.
`dtype` must be an `np.dtype`
`bound` must be either `min` or `max`
"""
if np.dtype(dtype).kind == "f":
if sign == "+":
return np.inf
elif sign == "-":
return -np.inf
else:
raise TypeError(f"Unknown sign {sign}, use either '+' or '-'")
elif np.dtype(dtype).kind == "i":
if sign == "+":
return np.iinfo(dtype).max - 2
elif sign == "-":
return np.iinfo(dtype).min + 2
else:
raise TypeError(f"Unknown sign {sign}, use either '+' or '-'")
else:
raise ValueError(f"Unknown dtype {dtype} for infinite bounds")
def get_precision(dtype) -> SupportsFloat:
if np.issubdtype(dtype, np.floating):
return np.finfo(dtype).precision
else:
return np.inf
def _broadcast(
value: Union[SupportsFloat, np.ndarray],
dtype,
shape: tuple[int, ...],
inf_sign: str,
) -> np.ndarray:
"""handle infinite bounds and broadcast at the same time if needed"""
if np.isscalar(value):
value = get_inf(dtype, inf_sign) if np.isinf(value) else value # type: ignore
value = np.full(shape, value, dtype=dtype)
else:
assert isinstance(value, np.ndarray)
if np.any(np.isinf(value)):
# create new array with dtype, but maintain old one to preserve np.inf
temp = value.astype(dtype)
temp[np.isinf(value)] = get_inf(dtype, inf_sign)
value = temp
return value