Files
Gymnasium/gym/spaces/dict.py
Andrea PIERRÉ e913bc81b8 Improve pre-commit workflow (#2602)
* feat: add `isort` to `pre-commit`

* ci: skip `__init__.py` file for `isort`

* ci: make `isort` mandatory in lint pipeline

* docs: add a section on Git hooks

* ci: check isort diff

* fix: isort from master branch

* docs: add pre-commit badge

* ci: update black + bandit versions

* feat: add PR template

* refactor: PR template

* ci: remove bandit

* docs: add Black badge

* ci: try to remove all `|| true` statements

* ci: remove lint_python job

- Remove `lint_python` CI job
- Move `pyupgrade` job to `pre-commit` workflow

* fix: avoid messing with typing

* docs: add a note on running `pre-cpmmit` manually

* ci: apply `pre-commit` to the whole codebase
2022-03-31 15:50:38 -04:00

161 lines
5.4 KiB
Python

from __future__ import annotations
from collections import OrderedDict
from collections.abc import Mapping, Sequence
from typing import Dict as TypingDict
import numpy as np
from .space import Space
class Dict(Space[TypingDict[str, Space]], Mapping):
"""
A dictionary of simpler spaces.
Example usage:
self.observation_space = spaces.Dict({"position": spaces.Discrete(2), "velocity": spaces.Discrete(3)})
Example usage [nested]:
self.nested_observation_space = spaces.Dict({
'sensors': spaces.Dict({
'position': spaces.Box(low=-100, high=100, shape=(3,)),
'velocity': spaces.Box(low=-1, high=1, shape=(3,)),
'front_cam': spaces.Tuple((
spaces.Box(low=0, high=1, shape=(10, 10, 3)),
spaces.Box(low=0, high=1, shape=(10, 10, 3))
)),
'rear_cam': spaces.Box(low=0, high=1, shape=(10, 10, 3)),
}),
'ext_controller': spaces.MultiDiscrete((5, 2, 2)),
'inner_state':spaces.Dict({
'charge': spaces.Discrete(100),
'system_checks': spaces.MultiBinary(10),
'job_status': spaces.Dict({
'task': spaces.Discrete(5),
'progress': spaces.Box(low=0, high=100, shape=()),
})
})
})
"""
def __init__(
self,
spaces: dict[str, Space] | None = None,
seed: dict | int | None = None,
**spaces_kwargs: Space,
):
assert (spaces is None) or (
not spaces_kwargs
), "Use either Dict(spaces=dict(...)) or Dict(foo=x, bar=z)"
if spaces is None:
spaces = spaces_kwargs
if isinstance(spaces, dict) and not isinstance(spaces, OrderedDict):
try:
spaces = OrderedDict(sorted(spaces.items()))
except TypeError: # raise when sort by different types of keys
spaces = OrderedDict(spaces.items())
if isinstance(spaces, Sequence):
spaces = OrderedDict(spaces)
assert isinstance(spaces, OrderedDict), "spaces must be a dictionary"
self.spaces = spaces
for space in spaces.values():
assert isinstance(
space, Space
), "Values of the dict should be instances of gym.Space"
super().__init__(
None, None, seed # type: ignore
) # None for shape and dtype, since it'll require special handling
def seed(self, seed: dict | int | None = None) -> list:
seeds = []
if isinstance(seed, dict):
for key, seed_key in zip(self.spaces, seed):
assert key == seed_key, print(
"Key value",
seed_key,
"in passed seed dict did not match key value",
key,
"in spaces Dict.",
)
seeds += self.spaces[key].seed(seed[seed_key])
elif isinstance(seed, int):
seeds = super().seed(seed)
try:
subseeds = self.np_random.choice(
np.iinfo(int).max,
size=len(self.spaces),
replace=False, # unique subseed for each subspace
)
except ValueError:
subseeds = self.np_random.choice(
np.iinfo(int).max,
size=len(self.spaces),
replace=True, # we get more than INT_MAX subspaces
)
for subspace, subseed in zip(self.spaces.values(), subseeds):
seeds.append(subspace.seed(int(subseed))[0])
elif seed is None:
for space in self.spaces.values():
seeds += space.seed(seed)
else:
raise TypeError("Passed seed not of an expected type: dict or int or None")
return seeds
def sample(self) -> dict:
return OrderedDict([(k, space.sample()) for k, space in self.spaces.items()])
def contains(self, x) -> bool:
if not isinstance(x, dict) or len(x) != len(self.spaces):
return False
for k, space in self.spaces.items():
if k not in x:
return False
if not space.contains(x[k]):
return False
return True
def __getitem__(self, key):
return self.spaces[key]
def __setitem__(self, key, value):
self.spaces[key] = value
def __iter__(self):
yield from self.spaces
def __len__(self) -> int:
return len(self.spaces)
def __repr__(self) -> str:
return (
"Dict("
+ ", ".join([str(k) + ":" + str(s) for k, s in self.spaces.items()])
+ ")"
)
def to_jsonable(self, sample_n: list) -> dict:
# serialize as dict-repr of vectors
return {
key: space.to_jsonable([sample[key] for sample in sample_n])
for key, space in self.spaces.items()
}
def from_jsonable(self, sample_n: dict[str, list]) -> list:
dict_of_list: dict[str, list] = {}
for key, space in self.spaces.items():
dict_of_list[key] = space.from_jsonable(sample_n[key])
ret = []
n_elements = len(next(iter(dict_of_list.values())))
for i in range(n_elements):
entry = {}
for key, value in dict_of_list.items():
entry[key] = value[i]
ret.append(entry)
return ret