Files
Gymnasium/gym/vector/async_vector_env.py
Andrea PIERRÉ e913bc81b8 Improve pre-commit workflow (#2602)
* feat: add `isort` to `pre-commit`

* ci: skip `__init__.py` file for `isort`

* ci: make `isort` mandatory in lint pipeline

* docs: add a section on Git hooks

* ci: check isort diff

* fix: isort from master branch

* docs: add pre-commit badge

* ci: update black + bandit versions

* feat: add PR template

* refactor: PR template

* ci: remove bandit

* docs: add Black badge

* ci: try to remove all `|| true` statements

* ci: remove lint_python job

- Remove `lint_python` CI job
- Move `pyupgrade` job to `pre-commit` workflow

* fix: avoid messing with typing

* docs: add a note on running `pre-cpmmit` manually

* ci: apply `pre-commit` to the whole codebase
2022-03-31 15:50:38 -04:00

764 lines
27 KiB
Python

import multiprocessing as mp
import sys
import time
from copy import deepcopy
from enum import Enum
from typing import List, Optional, Union
import numpy as np
from gym import logger
from gym.error import (
AlreadyPendingCallError,
ClosedEnvironmentError,
CustomSpaceError,
NoAsyncCallError,
)
from gym.logger import warn
from gym.vector.utils import (
CloudpickleWrapper,
clear_mpi_env_vars,
concatenate,
create_empty_array,
create_shared_memory,
iterate,
read_from_shared_memory,
write_to_shared_memory,
)
from gym.vector.vector_env import VectorEnv
__all__ = ["AsyncVectorEnv"]
class AsyncState(Enum):
DEFAULT = "default"
WAITING_RESET = "reset"
WAITING_STEP = "step"
WAITING_CALL = "call"
class AsyncVectorEnv(VectorEnv):
"""Vectorized environment that runs multiple environments in parallel. It
uses `multiprocessing`_ processes, and pipes for communication.
Parameters
----------
env_fns : iterable of callable
Functions that create the environments.
observation_space : :class:`gym.spaces.Space`, optional
Observation space of a single environment. If ``None``, then the
observation space of the first environment is taken.
action_space : :class:`gym.spaces.Space`, optional
Action space of a single environment. If ``None``, then the action space
of the first environment is taken.
shared_memory : bool
If ``True``, then the observations from the worker processes are
communicated back through shared variables. This can improve the
efficiency if the observations are large (e.g. images).
copy : bool
If ``True``, then the :meth:`~AsyncVectorEnv.reset` and
:meth:`~AsyncVectorEnv.step` methods return a copy of the observations.
context : str, optional
Context for `multiprocessing`_. If ``None``, then the default context is used.
daemon : bool
If ``True``, then subprocesses have ``daemon`` flag turned on; that is, they
will quit if the head process quits. However, ``daemon=True`` prevents
subprocesses to spawn children, so for some environments you may want
to have it set to ``False``.
worker : callable, optional
If set, then use that worker in a subprocess instead of a default one.
Can be useful to override some inner vector env logic, for instance,
how resets on done are handled.
Warning
-------
:attr:`worker` is an advanced mode option. It provides a high degree of
flexibility and a high chance to shoot yourself in the foot; thus,
if you are writing your own worker, it is recommended to start from the code
for ``_worker`` (or ``_worker_shared_memory``) method, and add changes.
Raises
------
RuntimeError
If the observation space of some sub-environment does not match
:obj:`observation_space` (or, by default, the observation space of
the first sub-environment).
ValueError
If :obj:`observation_space` is a custom space (i.e. not a default
space in Gym, such as :class:`~gym.spaces.Box`, :class:`~gym.spaces.Discrete`,
or :class:`~gym.spaces.Dict`) and :obj:`shared_memory` is ``True``.
Example
-------
.. code-block::
>>> env = gym.vector.AsyncVectorEnv([
... lambda: gym.make("Pendulum-v0", g=9.81),
... lambda: gym.make("Pendulum-v0", g=1.62)
... ])
>>> env.reset()
array([[-0.8286432 , 0.5597771 , 0.90249056],
[-0.85009176, 0.5266346 , 0.60007906]], dtype=float32)
"""
def __init__(
self,
env_fns,
observation_space=None,
action_space=None,
shared_memory=True,
copy=True,
context=None,
daemon=True,
worker=None,
):
ctx = mp.get_context(context)
self.env_fns = env_fns
self.shared_memory = shared_memory
self.copy = copy
dummy_env = env_fns[0]()
self.metadata = dummy_env.metadata
if (observation_space is None) or (action_space is None):
observation_space = observation_space or dummy_env.observation_space
action_space = action_space or dummy_env.action_space
dummy_env.close()
del dummy_env
super().__init__(
num_envs=len(env_fns),
observation_space=observation_space,
action_space=action_space,
)
if self.shared_memory:
try:
_obs_buffer = create_shared_memory(
self.single_observation_space, n=self.num_envs, ctx=ctx
)
self.observations = read_from_shared_memory(
self.single_observation_space, _obs_buffer, n=self.num_envs
)
except CustomSpaceError:
raise ValueError(
"Using `shared_memory=True` in `AsyncVectorEnv` "
"is incompatible with non-standard Gym observation spaces "
"(i.e. custom spaces inheriting from `gym.Space`), and is "
"only compatible with default Gym spaces (e.g. `Box`, "
"`Tuple`, `Dict`) for batching. Set `shared_memory=False` "
"if you use custom observation spaces."
)
else:
_obs_buffer = None
self.observations = create_empty_array(
self.single_observation_space, n=self.num_envs, fn=np.zeros
)
self.parent_pipes, self.processes = [], []
self.error_queue = ctx.Queue()
target = _worker_shared_memory if self.shared_memory else _worker
target = worker or target
with clear_mpi_env_vars():
for idx, env_fn in enumerate(self.env_fns):
parent_pipe, child_pipe = ctx.Pipe()
process = ctx.Process(
target=target,
name=f"Worker<{type(self).__name__}>-{idx}",
args=(
idx,
CloudpickleWrapper(env_fn),
child_pipe,
parent_pipe,
_obs_buffer,
self.error_queue,
),
)
self.parent_pipes.append(parent_pipe)
self.processes.append(process)
process.daemon = daemon
process.start()
child_pipe.close()
self._state = AsyncState.DEFAULT
self._check_spaces()
def seed(self, seed=None):
super().seed(seed=seed)
self._assert_is_running()
if seed is None:
seed = [None for _ in range(self.num_envs)]
if isinstance(seed, int):
seed = [seed + i for i in range(self.num_envs)]
assert len(seed) == self.num_envs
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError(
f"Calling `seed` while waiting for a pending call to `{self._state.value}` to complete.",
self._state.value,
)
for pipe, seed in zip(self.parent_pipes, seed):
pipe.send(("seed", seed))
_, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
def reset_async(
self,
seed: Optional[Union[int, List[int]]] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
"""Send the calls to :obj:`reset` to each sub-environment.
Raises
------
ClosedEnvironmentError
If the environment was closed (if :meth:`close` was previously called).
AlreadyPendingCallError
If the environment is already waiting for a pending call to another
method (e.g. :meth:`step_async`). This can be caused by two consecutive
calls to :meth:`reset_async`, with no call to :meth:`reset_wait` in
between.
"""
self._assert_is_running()
if seed is None:
seed = [None for _ in range(self.num_envs)]
if isinstance(seed, int):
seed = [seed + i for i in range(self.num_envs)]
assert len(seed) == self.num_envs
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError(
f"Calling `reset_async` while waiting for a pending call to `{self._state.value}` to complete",
self._state.value,
)
for pipe, single_seed in zip(self.parent_pipes, seed):
single_kwargs = {}
if single_seed is not None:
single_kwargs["seed"] = single_seed
if return_info:
single_kwargs["return_info"] = return_info
if options is not None:
single_kwargs["options"] = options
pipe.send(("reset", single_kwargs))
self._state = AsyncState.WAITING_RESET
def reset_wait(
self,
timeout=None,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `reset_wait` times out. If
`None`, the call to `reset_wait` never times out.
seed: ignored
options: ignored
Returns
-------
element of :attr:`~VectorEnv.observation_space`
A batch of observations from the vectorized environment.
infos : list of dicts containing metadata
Raises
------
ClosedEnvironmentError
If the environment was closed (if :meth:`close` was previously called).
NoAsyncCallError
If :meth:`reset_wait` was called without any prior call to
:meth:`reset_async`.
TimeoutError
If :meth:`reset_wait` timed out.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_RESET:
raise NoAsyncCallError(
"Calling `reset_wait` without any prior " "call to `reset_async`.",
AsyncState.WAITING_RESET.value,
)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
raise mp.TimeoutError(
f"The call to `reset_wait` has timed out after {timeout} second(s)."
)
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
self._state = AsyncState.DEFAULT
if return_info:
results, infos = zip(*results)
infos = list(infos)
if not self.shared_memory:
self.observations = concatenate(
self.single_observation_space, results, self.observations
)
return (
deepcopy(self.observations) if self.copy else self.observations
), infos
else:
if not self.shared_memory:
self.observations = concatenate(
self.single_observation_space, results, self.observations
)
return deepcopy(self.observations) if self.copy else self.observations
def step_async(self, actions):
"""Send the calls to :obj:`step` to each sub-environment.
Parameters
----------
actions : element of :attr:`~VectorEnv.action_space`
Batch of actions.
Raises
------
ClosedEnvironmentError
If the environment was closed (if :meth:`close` was previously called).
AlreadyPendingCallError
If the environment is already waiting for a pending call to another
method (e.g. :meth:`reset_async`). This can be caused by two consecutive
calls to :meth:`step_async`, with no call to :meth:`step_wait` in
between.
"""
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError(
f"Calling `step_async` while waiting for a pending call to `{self._state.value}` to complete.",
self._state.value,
)
actions = iterate(self.action_space, actions)
for pipe, action in zip(self.parent_pipes, actions):
pipe.send(("step", action))
self._state = AsyncState.WAITING_STEP
def step_wait(self, timeout=None):
"""Wait for the calls to :obj:`step` in each sub-environment to finish.
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to :meth:`step_wait` times out. If
``None``, the call to :meth:`step_wait` never times out.
Returns
-------
observations : element of :attr:`~VectorEnv.observation_space`
A batch of observations from the vectorized environment.
rewards : :obj:`np.ndarray`, dtype :obj:`np.float_`
A vector of rewards from the vectorized environment.
dones : :obj:`np.ndarray`, dtype :obj:`np.bool_`
A vector whose entries indicate whether the episode has ended.
infos : list of dict
A list of auxiliary diagnostic information dicts from sub-environments.
Raises
------
ClosedEnvironmentError
If the environment was closed (if :meth:`close` was previously called).
NoAsyncCallError
If :meth:`step_wait` was called without any prior call to
:meth:`step_async`.
TimeoutError
If :meth:`step_wait` timed out.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_STEP:
raise NoAsyncCallError(
"Calling `step_wait` without any prior call " "to `step_async`.",
AsyncState.WAITING_STEP.value,
)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
raise mp.TimeoutError(
f"The call to `step_wait` has timed out after {timeout} second(s)."
)
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
self._state = AsyncState.DEFAULT
observations_list, rewards, dones, infos = zip(*results)
if not self.shared_memory:
self.observations = concatenate(
self.single_observation_space,
observations_list,
self.observations,
)
return (
deepcopy(self.observations) if self.copy else self.observations,
np.array(rewards),
np.array(dones, dtype=np.bool_),
infos,
)
def call_async(self, name, *args, **kwargs):
"""
Parameters
----------
name : string
Name of the method or property to call.
*args
Arguments to apply to the method call.
**kwargs
Keywoard arguments to apply to the method call.
"""
self._assert_is_running()
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError(
"Calling `call_async` while waiting "
f"for a pending call to `{self._state.value}` to complete.",
self._state.value,
)
for pipe in self.parent_pipes:
pipe.send(("_call", (name, args, kwargs)))
self._state = AsyncState.WAITING_CALL
def call_wait(self, timeout=None):
"""
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to `step_wait` times out. If
`None` (default), the call to `step_wait` never times out.
Returns
-------
results : list
List of the results of the individual calls to the method or
property for each environment.
"""
self._assert_is_running()
if self._state != AsyncState.WAITING_CALL:
raise NoAsyncCallError(
"Calling `call_wait` without any prior call to `call_async`.",
AsyncState.WAITING_CALL.value,
)
if not self._poll(timeout):
self._state = AsyncState.DEFAULT
raise mp.TimeoutError(
f"The call to `call_wait` has timed out after {timeout} second(s)."
)
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
self._state = AsyncState.DEFAULT
return results
def set_attr(self, name, values):
"""
Parameters
----------
name : string
Name of the property to be set in each individual environment.
values : list, tuple, or object
Values of the property to be set to. If `values` is a list or
tuple, then it corresponds to the values for each individual
environment, otherwise a single value is set for all environments.
"""
self._assert_is_running()
if not isinstance(values, (list, tuple)):
values = [values for _ in range(self.num_envs)]
if len(values) != self.num_envs:
raise ValueError(
"Values must be a list or tuple with length equal to the "
f"number of environments. Got `{len(values)}` values for "
f"{self.num_envs} environments."
)
if self._state != AsyncState.DEFAULT:
raise AlreadyPendingCallError(
"Calling `set_attr` while waiting "
f"for a pending call to `{self._state.value}` to complete.",
self._state.value,
)
for pipe, value in zip(self.parent_pipes, values):
pipe.send(("_setattr", (name, value)))
_, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
def close_extras(self, timeout=None, terminate=False):
"""Close the environments & clean up the extra resources
(processes and pipes).
Parameters
----------
timeout : int or float, optional
Number of seconds before the call to :meth:`close` times out. If ``None``,
the call to :meth:`close` never times out. If the call to :meth:`close`
times out, then all processes are terminated.
terminate : bool
If ``True``, then the :meth:`close` operation is forced and all processes
are terminated.
Raises
------
TimeoutError
If :meth:`close` timed out.
"""
timeout = 0 if terminate else timeout
try:
if self._state != AsyncState.DEFAULT:
logger.warn(
f"Calling `close` while waiting for a pending call to `{self._state.value}` to complete."
)
function = getattr(self, f"{self._state.value}_wait")
function(timeout)
except mp.TimeoutError:
terminate = True
if terminate:
for process in self.processes:
if process.is_alive():
process.terminate()
else:
for pipe in self.parent_pipes:
if (pipe is not None) and (not pipe.closed):
pipe.send(("close", None))
for pipe in self.parent_pipes:
if (pipe is not None) and (not pipe.closed):
pipe.recv()
for pipe in self.parent_pipes:
if pipe is not None:
pipe.close()
for process in self.processes:
process.join()
def _poll(self, timeout=None):
self._assert_is_running()
if timeout is None:
return True
end_time = time.perf_counter() + timeout
delta = None
for pipe in self.parent_pipes:
delta = max(end_time - time.perf_counter(), 0)
if pipe is None:
return False
if pipe.closed or (not pipe.poll(delta)):
return False
return True
def _check_spaces(self):
self._assert_is_running()
spaces = (self.single_observation_space, self.single_action_space)
for pipe in self.parent_pipes:
pipe.send(("_check_spaces", spaces))
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
self._raise_if_errors(successes)
same_observation_spaces, same_action_spaces = zip(*results)
if not all(same_observation_spaces):
raise RuntimeError(
"Some environments have an observation space different from "
f"`{self.single_observation_space}`. In order to batch observations, "
"the observation spaces from all environments must be equal."
)
if not all(same_action_spaces):
raise RuntimeError(
"Some environments have an action space different from "
f"`{self.single_action_space}`. In order to batch actions, the "
"action spaces from all environments must be equal."
)
def _assert_is_running(self):
if self.closed:
raise ClosedEnvironmentError(
f"Trying to operate on `{type(self).__name__}`, after a call to `close()`."
)
def _raise_if_errors(self, successes):
if all(successes):
return
num_errors = self.num_envs - sum(successes)
assert num_errors > 0
for _ in range(num_errors):
index, exctype, value = self.error_queue.get()
logger.error(
f"Received the following error from Worker-{index}: {exctype.__name__}: {value}"
)
logger.error(f"Shutting down Worker-{index}.")
self.parent_pipes[index].close()
self.parent_pipes[index] = None
logger.error("Raising the last exception back to the main process.")
raise exctype(value)
def __del__(self):
if not getattr(self, "closed", True) and hasattr(self, "_state"):
self.close(terminate=True)
def _worker(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is None
env = env_fn()
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
if command == "reset":
if "return_info" in data and data["return_info"] == True:
observation, info = env.reset(**data)
pipe.send(((observation, info), True))
else:
observation = env.reset(**data)
pipe.send((observation, True))
elif command == "step":
observation, reward, done, info = env.step(data)
if done:
info["terminal_observation"] = observation
observation = env.reset()
pipe.send(((observation, reward, done, info), True))
elif command == "seed":
env.seed(data)
pipe.send((None, True))
elif command == "close":
pipe.send((None, True))
break
elif command == "_call":
name, args, kwargs = data
if name in ["reset", "step", "seed", "close"]:
raise ValueError(
f"Trying to call function `{name}` with "
f"`_call`. Use `{name}` directly instead."
)
function = getattr(env, name)
if callable(function):
pipe.send((function(*args, **kwargs), True))
else:
pipe.send((function, True))
elif command == "_setattr":
name, value = data
setattr(env, name, value)
pipe.send((None, True))
elif command == "_check_spaces":
pipe.send(
(
(data[0] == env.observation_space, data[1] == env.action_space),
True,
)
)
else:
raise RuntimeError(
f"Received unknown command `{command}`. Must "
"be one of {`reset`, `step`, `seed`, `close`, `_call`, "
"`_setattr`, `_check_spaces`}."
)
except (KeyboardInterrupt, Exception):
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send((None, False))
finally:
env.close()
def _worker_shared_memory(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
assert shared_memory is not None
env = env_fn()
observation_space = env.observation_space
parent_pipe.close()
try:
while True:
command, data = pipe.recv()
if command == "reset":
if "return_info" in data and data["return_info"] == True:
observation, info = env.reset(**data)
write_to_shared_memory(
observation_space, index, observation, shared_memory
)
pipe.send(((None, info), True))
else:
observation = env.reset(**data)
write_to_shared_memory(
observation_space, index, observation, shared_memory
)
pipe.send((None, True))
elif command == "step":
observation, reward, done, info = env.step(data)
if done:
info["terminal_observation"] = observation
observation = env.reset()
write_to_shared_memory(
observation_space, index, observation, shared_memory
)
pipe.send(((None, reward, done, info), True))
elif command == "seed":
env.seed(data)
pipe.send((None, True))
elif command == "close":
pipe.send((None, True))
break
elif command == "_call":
name, args, kwargs = data
if name in ["reset", "step", "seed", "close"]:
raise ValueError(
f"Trying to call function `{name}` with "
f"`_call`. Use `{name}` directly instead."
)
function = getattr(env, name)
if callable(function):
pipe.send((function(*args, **kwargs), True))
else:
pipe.send((function, True))
elif command == "_setattr":
name, value = data
setattr(env, name, value)
pipe.send((None, True))
elif command == "_check_spaces":
pipe.send(
((data[0] == observation_space, data[1] == env.action_space), True)
)
else:
raise RuntimeError(
f"Received unknown command `{command}`. Must "
"be one of {`reset`, `step`, `seed`, `close`, `_call`, "
"`_setattr`, `_check_spaces`}."
)
except (KeyboardInterrupt, Exception):
error_queue.put((index,) + sys.exc_info()[:2])
pipe.send((None, False))
finally:
env.close()