Files
Gymnasium/gym/vector/utils/spaces.py
Andrea PIERRÉ e913bc81b8 Improve pre-commit workflow (#2602)
* feat: add `isort` to `pre-commit`

* ci: skip `__init__.py` file for `isort`

* ci: make `isort` mandatory in lint pipeline

* docs: add a section on Git hooks

* ci: check isort diff

* fix: isort from master branch

* docs: add pre-commit badge

* ci: update black + bandit versions

* feat: add PR template

* refactor: PR template

* ci: remove bandit

* docs: add Black badge

* ci: try to remove all `|| true` statements

* ci: remove lint_python job

- Remove `lint_python` CI job
- Move `pyupgrade` job to `pre-commit` workflow

* fix: avoid messing with typing

* docs: add a note on running `pre-cpmmit` manually

* ci: apply `pre-commit` to the whole codebase
2022-03-31 15:50:38 -04:00

188 lines
5.3 KiB
Python

from collections import OrderedDict
from functools import singledispatch
import numpy as np
from gym.error import CustomSpaceError
from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Space, Tuple
_BaseGymSpaces = (Box, Discrete, MultiDiscrete, MultiBinary)
__all__ = ["_BaseGymSpaces", "batch_space", "iterate"]
@singledispatch
def batch_space(space, n=1):
"""Create a (batched) space, containing multiple copies of a single space.
Parameters
----------
space : `gym.spaces.Space` instance
Space (e.g. the observation space) for a single environment in the
vectorized environment.
n : int
Number of environments in the vectorized environment.
Returns
-------
batched_space : `gym.spaces.Space` instance
Space (e.g. the observation space) for a batch of environments in the
vectorized environment.
Example
-------
>>> from gym.spaces import Box, Dict
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
>>> batch_space(space, n=5)
Dict(position:Box(5, 3), velocity:Box(5, 2))
"""
raise ValueError(
f"Cannot batch space with type `{type(space)}`. The space must be a valid `gym.Space` instance."
)
@batch_space.register(Box)
def _batch_space_box(space, n=1):
repeats = tuple([n] + [1] * space.low.ndim)
low, high = np.tile(space.low, repeats), np.tile(space.high, repeats)
return Box(low=low, high=high, dtype=space.dtype)
@batch_space.register(Discrete)
def _batch_space_discrete(space, n=1):
if space.start == 0:
return MultiDiscrete(np.full((n,), space.n, dtype=space.dtype))
else:
return Box(
low=space.start,
high=space.start + space.n - 1,
shape=(n,),
dtype=space.dtype,
)
@batch_space.register(MultiDiscrete)
def _batch_space_multidiscrete(space, n=1):
repeats = tuple([n] + [1] * space.nvec.ndim)
high = np.tile(space.nvec, repeats) - 1
return Box(low=np.zeros_like(high), high=high, dtype=space.dtype)
@batch_space.register(MultiBinary)
def _batch_space_multibinary(space, n=1):
return Box(low=0, high=1, shape=(n,) + space.shape, dtype=space.dtype)
@batch_space.register(Tuple)
def _batch_space_tuple(space, n=1):
return Tuple(tuple(batch_space(subspace, n=n) for subspace in space.spaces))
@batch_space.register(Dict)
def _batch_space_dict(space, n=1):
return Dict(
OrderedDict(
[
(key, batch_space(subspace, n=n))
for (key, subspace) in space.spaces.items()
]
)
)
@batch_space.register(Space)
def _batch_space_custom(space, n=1):
return Tuple(tuple(space for _ in range(n)))
@singledispatch
def iterate(space, items):
"""Iterate over the elements of a (batched) space.
Parameters
----------
space : `gym.spaces.Space` instance
Space to which `items` belong to.
items : samples of `space`
Items to be iterated over.
Returns
-------
iterator : `Iterable` instance
Iterator over the elements in `items`.
Example
-------
>>> from gym.spaces import Box, Dict
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(2, 3), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2, 2), dtype=np.float32)})
>>> items = space.sample()
>>> it = iterate(space, items)
>>> next(it)
{'position': array([-0.99644893, -0.08304597, -0.7238421 ], dtype=float32),
'velocity': array([0.35848552, 0.1533453 ], dtype=float32)}
>>> next(it)
{'position': array([-0.67958736, -0.49076623, 0.38661423], dtype=float32),
'velocity': array([0.7975036 , 0.93317133], dtype=float32)}
>>> next(it)
StopIteration
"""
raise ValueError(
"Space of type `{}` is not a valid `gym.Space` " "instance.".format(type(space))
)
@iterate.register(Discrete)
def _iterate_discrete(space, items):
raise TypeError("Unable to iterate over a space of type `Discrete`.")
@iterate.register(Box)
@iterate.register(MultiDiscrete)
@iterate.register(MultiBinary)
def _iterate_base(space, items):
try:
return iter(items)
except TypeError:
raise TypeError(f"Unable to iterate over the following elements: {items}")
@iterate.register(Tuple)
def _iterate_tuple(space, items):
# If this is a tuple of custom subspaces only, then simply iterate over items
if all(
isinstance(subspace, Space)
and (not isinstance(subspace, _BaseGymSpaces + (Tuple, Dict)))
for subspace in space.spaces
):
return iter(items)
return zip(
*[iterate(subspace, items[i]) for i, subspace in enumerate(space.spaces)]
)
@iterate.register(Dict)
def _iterate_dict(space, items):
keys, values = zip(
*[
(key, iterate(subspace, items[key]))
for key, subspace in space.spaces.items()
]
)
for item in zip(*values):
yield OrderedDict([(key, value) for (key, value) in zip(keys, item)])
@iterate.register(Space)
def _iterate_custom(space, items):
raise CustomSpaceError(
f"Unable to iterate over {items}, since {space} "
"is a custom `gym.Space` instance (i.e. not one of "
"`Box`, `Dict`, etc...)."
)