mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-31 22:04:31 +00:00
* feat: add `isort` to `pre-commit` * ci: skip `__init__.py` file for `isort` * ci: make `isort` mandatory in lint pipeline * docs: add a section on Git hooks * ci: check isort diff * fix: isort from master branch * docs: add pre-commit badge * ci: update black + bandit versions * feat: add PR template * refactor: PR template * ci: remove bandit * docs: add Black badge * ci: try to remove all `|| true` statements * ci: remove lint_python job - Remove `lint_python` CI job - Move `pyupgrade` job to `pre-commit` workflow * fix: avoid messing with typing * docs: add a note on running `pre-cpmmit` manually * ci: apply `pre-commit` to the whole codebase
186 lines
6.5 KiB
Python
186 lines
6.5 KiB
Python
import numpy as np
|
|
|
|
import gym
|
|
from gym.spaces import Box
|
|
|
|
try:
|
|
import cv2
|
|
except ImportError:
|
|
cv2 = None
|
|
|
|
|
|
class AtariPreprocessing(gym.Wrapper):
|
|
r"""Atari 2600 preprocessings.
|
|
|
|
This class follows the guidelines in
|
|
Machado et al. (2018), "Revisiting the Arcade Learning Environment:
|
|
Evaluation Protocols and Open Problems for General Agents".
|
|
|
|
Specifically:
|
|
|
|
* NoopReset: obtain initial state by taking random number of no-ops on reset.
|
|
* Frame skipping: 4 by default
|
|
* Max-pooling: most recent two observations
|
|
* Termination signal when a life is lost: turned off by default. Not recommended by Machado et al. (2018).
|
|
* Resize to a square image: 84x84 by default
|
|
* Grayscale observation: optional
|
|
* Scale observation: optional
|
|
|
|
Args:
|
|
env (Env): environment
|
|
noop_max (int): max number of no-ops
|
|
frame_skip (int): the frequency at which the agent experiences the game.
|
|
screen_size (int): resize Atari frame
|
|
terminal_on_life_loss (bool): if True, then step() returns done=True whenever a
|
|
life is lost.
|
|
grayscale_obs (bool): if True, then gray scale observation is returned, otherwise, RGB observation
|
|
is returned.
|
|
grayscale_newaxis (bool): if True and grayscale_obs=True, then a channel axis is added to
|
|
grayscale observations to make them 3-dimensional.
|
|
scale_obs (bool): if True, then observation normalized in range [0,1] is returned. It also limits memory
|
|
optimization benefits of FrameStack Wrapper.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
env: gym.Env,
|
|
noop_max: int = 30,
|
|
frame_skip: int = 4,
|
|
screen_size: int = 84,
|
|
terminal_on_life_loss: bool = False,
|
|
grayscale_obs: bool = True,
|
|
grayscale_newaxis: bool = False,
|
|
scale_obs: bool = False,
|
|
):
|
|
super().__init__(env)
|
|
assert (
|
|
cv2 is not None
|
|
), "opencv-python package not installed! Try running pip install gym[other] to get dependencies for atari"
|
|
assert frame_skip > 0
|
|
assert screen_size > 0
|
|
assert noop_max >= 0
|
|
if frame_skip > 1:
|
|
if (
|
|
"NoFrameskip" not in env.spec.id
|
|
and getattr(env.unwrapped, "_frameskip", None) != 1
|
|
):
|
|
raise ValueError(
|
|
"Disable frame-skipping in the original env. Otherwise, more than one"
|
|
" frame-skip will happen as through this wrapper"
|
|
)
|
|
self.noop_max = noop_max
|
|
assert env.unwrapped.get_action_meanings()[0] == "NOOP"
|
|
|
|
self.frame_skip = frame_skip
|
|
self.screen_size = screen_size
|
|
self.terminal_on_life_loss = terminal_on_life_loss
|
|
self.grayscale_obs = grayscale_obs
|
|
self.grayscale_newaxis = grayscale_newaxis
|
|
self.scale_obs = scale_obs
|
|
|
|
# buffer of most recent two observations for max pooling
|
|
if grayscale_obs:
|
|
self.obs_buffer = [
|
|
np.empty(env.observation_space.shape[:2], dtype=np.uint8),
|
|
np.empty(env.observation_space.shape[:2], dtype=np.uint8),
|
|
]
|
|
else:
|
|
self.obs_buffer = [
|
|
np.empty(env.observation_space.shape, dtype=np.uint8),
|
|
np.empty(env.observation_space.shape, dtype=np.uint8),
|
|
]
|
|
|
|
self.ale = env.unwrapped.ale
|
|
self.lives = 0
|
|
self.game_over = False
|
|
|
|
_low, _high, _obs_dtype = (
|
|
(0, 255, np.uint8) if not scale_obs else (0, 1, np.float32)
|
|
)
|
|
_shape = (screen_size, screen_size, 1 if grayscale_obs else 3)
|
|
if grayscale_obs and not grayscale_newaxis:
|
|
_shape = _shape[:-1] # Remove channel axis
|
|
self.observation_space = Box(
|
|
low=_low, high=_high, shape=_shape, dtype=_obs_dtype
|
|
)
|
|
|
|
def step(self, action):
|
|
R = 0.0
|
|
|
|
for t in range(self.frame_skip):
|
|
_, reward, done, info = self.env.step(action)
|
|
R += reward
|
|
self.game_over = done
|
|
|
|
if self.terminal_on_life_loss:
|
|
new_lives = self.ale.lives()
|
|
done = done or new_lives < self.lives
|
|
self.lives = new_lives
|
|
|
|
if done:
|
|
break
|
|
if t == self.frame_skip - 2:
|
|
if self.grayscale_obs:
|
|
self.ale.getScreenGrayscale(self.obs_buffer[1])
|
|
else:
|
|
self.ale.getScreenRGB(self.obs_buffer[1])
|
|
elif t == self.frame_skip - 1:
|
|
if self.grayscale_obs:
|
|
self.ale.getScreenGrayscale(self.obs_buffer[0])
|
|
else:
|
|
self.ale.getScreenRGB(self.obs_buffer[0])
|
|
return self._get_obs(), R, done, info
|
|
|
|
def reset(self, **kwargs):
|
|
# NoopReset
|
|
if kwargs.get("return_info", False):
|
|
_, reset_info = self.env.reset(**kwargs)
|
|
else:
|
|
_ = self.env.reset(**kwargs)
|
|
reset_info = {}
|
|
|
|
noops = (
|
|
self.env.unwrapped.np_random.integers(1, self.noop_max + 1)
|
|
if self.noop_max > 0
|
|
else 0
|
|
)
|
|
for _ in range(noops):
|
|
_, _, done, step_info = self.env.step(0)
|
|
reset_info.update(step_info)
|
|
if done:
|
|
if kwargs.get("return_info", False):
|
|
_, reset_info = self.env.reset(**kwargs)
|
|
else:
|
|
_ = self.env.reset(**kwargs)
|
|
reset_info = {}
|
|
|
|
self.lives = self.ale.lives()
|
|
if self.grayscale_obs:
|
|
self.ale.getScreenGrayscale(self.obs_buffer[0])
|
|
else:
|
|
self.ale.getScreenRGB(self.obs_buffer[0])
|
|
self.obs_buffer[1].fill(0)
|
|
|
|
if kwargs.get("return_info", False):
|
|
return self._get_obs(), reset_info
|
|
else:
|
|
return self._get_obs()
|
|
|
|
def _get_obs(self):
|
|
if self.frame_skip > 1: # more efficient in-place pooling
|
|
np.maximum(self.obs_buffer[0], self.obs_buffer[1], out=self.obs_buffer[0])
|
|
obs = cv2.resize(
|
|
self.obs_buffer[0],
|
|
(self.screen_size, self.screen_size),
|
|
interpolation=cv2.INTER_AREA,
|
|
)
|
|
|
|
if self.scale_obs:
|
|
obs = np.asarray(obs, dtype=np.float32) / 255.0
|
|
else:
|
|
obs = np.asarray(obs, dtype=np.uint8)
|
|
|
|
if self.grayscale_obs and self.grayscale_newaxis:
|
|
obs = np.expand_dims(obs, axis=-1) # Add a channel axis
|
|
return obs
|