mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
* feat: add `isort` to `pre-commit` * ci: skip `__init__.py` file for `isort` * ci: make `isort` mandatory in lint pipeline * docs: add a section on Git hooks * ci: check isort diff * fix: isort from master branch * docs: add pre-commit badge * ci: update black + bandit versions * feat: add PR template * refactor: PR template * ci: remove bandit * docs: add Black badge * ci: try to remove all `|| true` statements * ci: remove lint_python job - Remove `lint_python` CI job - Move `pyupgrade` job to `pre-commit` workflow * fix: avoid messing with typing * docs: add a note on running `pre-cpmmit` manually * ci: apply `pre-commit` to the whole codebase
61 lines
2.1 KiB
Python
61 lines
2.1 KiB
Python
import time
|
|
from collections import deque
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
|
|
import gym
|
|
|
|
|
|
class RecordEpisodeStatistics(gym.Wrapper):
|
|
def __init__(self, env, deque_size=100):
|
|
super().__init__(env)
|
|
self.num_envs = getattr(env, "num_envs", 1)
|
|
self.t0 = time.perf_counter()
|
|
self.episode_count = 0
|
|
self.episode_returns = None
|
|
self.episode_lengths = None
|
|
self.return_queue = deque(maxlen=deque_size)
|
|
self.length_queue = deque(maxlen=deque_size)
|
|
self.is_vector_env = getattr(env, "is_vector_env", False)
|
|
|
|
def reset(self, **kwargs):
|
|
observations = super().reset(**kwargs)
|
|
self.episode_returns = np.zeros(self.num_envs, dtype=np.float32)
|
|
self.episode_lengths = np.zeros(self.num_envs, dtype=np.int32)
|
|
return observations
|
|
|
|
def step(self, action):
|
|
observations, rewards, dones, infos = super().step(action)
|
|
self.episode_returns += rewards
|
|
self.episode_lengths += 1
|
|
if not self.is_vector_env:
|
|
infos = [infos]
|
|
dones = [dones]
|
|
else:
|
|
infos = list(infos) # Convert infos to mutable type
|
|
for i in range(len(dones)):
|
|
if dones[i]:
|
|
infos[i] = infos[i].copy()
|
|
episode_return = self.episode_returns[i]
|
|
episode_length = self.episode_lengths[i]
|
|
episode_info = {
|
|
"r": episode_return,
|
|
"l": episode_length,
|
|
"t": round(time.perf_counter() - self.t0, 6),
|
|
}
|
|
infos[i]["episode"] = episode_info
|
|
self.return_queue.append(episode_return)
|
|
self.length_queue.append(episode_length)
|
|
self.episode_count += 1
|
|
self.episode_returns[i] = 0
|
|
self.episode_lengths[i] = 0
|
|
if self.is_vector_env:
|
|
infos = tuple(infos)
|
|
return (
|
|
observations,
|
|
rewards,
|
|
dones if self.is_vector_env else dones[0],
|
|
infos if self.is_vector_env else infos[0],
|
|
)
|