Files
Gymnasium/tests/envs/test_envs.py
Andrea PIERRÉ e913bc81b8 Improve pre-commit workflow (#2602)
* feat: add `isort` to `pre-commit`

* ci: skip `__init__.py` file for `isort`

* ci: make `isort` mandatory in lint pipeline

* docs: add a section on Git hooks

* ci: check isort diff

* fix: isort from master branch

* docs: add pre-commit badge

* ci: update black + bandit versions

* feat: add PR template

* refactor: PR template

* ci: remove bandit

* docs: add Black badge

* ci: try to remove all `|| true` statements

* ci: remove lint_python job

- Remove `lint_python` CI job
- Move `pyupgrade` job to `pre-commit` workflow

* fix: avoid messing with typing

* docs: add a note on running `pre-cpmmit` manually

* ci: apply `pre-commit` to the whole codebase
2022-03-31 15:50:38 -04:00

104 lines
3.2 KiB
Python

import numpy as np
import pytest
from gym import envs
from gym.spaces import Box
from gym.utils.env_checker import check_env
from tests.envs.spec_list import spec_list
# This runs a smoketest on each official registered env. We may want
# to try also running environments which are not officially registered
# envs.
@pytest.mark.filterwarnings(
"ignore:.*We recommend you to use a symmetric and normalized Box action space.*"
)
@pytest.mark.parametrize("spec", spec_list)
def test_env(spec):
# Capture warnings
with pytest.warns(None) as warnings:
env = spec.make()
# Test if env adheres to Gym API
check_env(env, warn=True, skip_render_check=True)
# Check that dtype is explicitly declared for gym.Box spaces
for warning_msg in warnings:
assert "autodetected dtype" not in str(warning_msg.message)
ob_space = env.observation_space
act_space = env.action_space
ob = env.reset()
assert ob_space.contains(ob), f"Reset observation: {ob!r} not in space"
if isinstance(ob_space, Box):
# Only checking dtypes for Box spaces to avoid iterating through tuple entries
assert (
ob.dtype == ob_space.dtype
), f"Reset observation dtype: {ob.dtype}, expected: {ob_space.dtype}"
a = act_space.sample()
observation, reward, done, _info = env.step(a)
assert ob_space.contains(
observation
), f"Step observation: {observation!r} not in space"
assert np.isscalar(reward), f"{reward} is not a scalar for {env}"
assert isinstance(done, bool), f"Expected {done} to be a boolean"
if isinstance(ob_space, Box):
assert (
observation.dtype == ob_space.dtype
), f"Step observation dtype: {ob.dtype}, expected: {ob_space.dtype}"
for mode in env.metadata.get("render_modes", []):
env.render(mode=mode)
# Make sure we can render the environment after close.
for mode in env.metadata.get("render_modes", []):
env.render(mode=mode)
env.close()
@pytest.mark.parametrize("spec", spec_list)
def test_reset_info(spec):
with pytest.warns(None) as warnings:
env = spec.make()
ob_space = env.observation_space
obs = env.reset()
assert ob_space.contains(obs)
obs = env.reset(return_info=False)
assert ob_space.contains(obs)
obs, info = env.reset(return_info=True)
assert ob_space.contains(obs)
assert isinstance(info, dict)
env.close()
# Run a longer rollout on some environments
def test_random_rollout():
for env in [envs.make("CartPole-v1"), envs.make("FrozenLake-v1")]:
agent = lambda ob: env.action_space.sample()
ob = env.reset()
for _ in range(10):
assert env.observation_space.contains(ob)
a = agent(ob)
assert env.action_space.contains(a)
(ob, _reward, done, _info) = env.step(a)
if done:
break
env.close()
def test_env_render_result_is_immutable():
environs = [
envs.make("Taxi-v3"),
envs.make("FrozenLake-v1"),
]
for env in environs:
env.reset()
output = env.render(mode="ansi")
assert isinstance(output, str)
env.close()