mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-31 22:04:31 +00:00
* feat: add `isort` to `pre-commit` * ci: skip `__init__.py` file for `isort` * ci: make `isort` mandatory in lint pipeline * docs: add a section on Git hooks * ci: check isort diff * fix: isort from master branch * docs: add pre-commit badge * ci: update black + bandit versions * feat: add PR template * refactor: PR template * ci: remove bandit * docs: add Black badge * ci: try to remove all `|| true` statements * ci: remove lint_python job - Remove `lint_python` CI job - Move `pyupgrade` job to `pre-commit` workflow * fix: avoid messing with typing * docs: add a note on running `pre-cpmmit` manually * ci: apply `pre-commit` to the whole codebase
99 lines
3.2 KiB
Python
99 lines
3.2 KiB
Python
"""Tests for the flatten observation wrapper."""
|
|
|
|
from collections import OrderedDict
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import gym
|
|
from gym.spaces import Box, Dict, flatten, unflatten
|
|
from gym.wrappers import FlattenObservation
|
|
|
|
|
|
class FakeEnvironment(gym.Env):
|
|
def __init__(self, observation_space):
|
|
self.observation_space = observation_space
|
|
|
|
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
|
|
super().reset(seed=seed)
|
|
self.observation = self.observation_space.sample()
|
|
return self.observation
|
|
|
|
|
|
OBSERVATION_SPACES = (
|
|
(
|
|
Dict(
|
|
OrderedDict(
|
|
[
|
|
("key1", Box(shape=(2, 3), low=0, high=0, dtype=np.float32)),
|
|
("key2", Box(shape=(), low=1, high=1, dtype=np.float32)),
|
|
("key3", Box(shape=(2,), low=2, high=2, dtype=np.float32)),
|
|
]
|
|
)
|
|
),
|
|
True,
|
|
),
|
|
(
|
|
Dict(
|
|
OrderedDict(
|
|
[
|
|
("key2", Box(shape=(), low=0, high=0, dtype=np.float32)),
|
|
("key3", Box(shape=(2,), low=1, high=1, dtype=np.float32)),
|
|
("key1", Box(shape=(2, 3), low=2, high=2, dtype=np.float32)),
|
|
]
|
|
)
|
|
),
|
|
True,
|
|
),
|
|
(
|
|
Dict(
|
|
{
|
|
"key1": Box(shape=(2, 3), low=-1, high=1, dtype=np.float32),
|
|
"key2": Box(shape=(), low=-1, high=1, dtype=np.float32),
|
|
"key3": Box(shape=(2,), low=-1, high=1, dtype=np.float32),
|
|
}
|
|
),
|
|
False,
|
|
),
|
|
)
|
|
|
|
|
|
class TestFlattenEnvironment:
|
|
@pytest.mark.parametrize("observation_space, ordered_values", OBSERVATION_SPACES)
|
|
def test_flattened_environment(self, observation_space, ordered_values):
|
|
"""
|
|
make sure that flattened observations occur in the order expected
|
|
"""
|
|
env = FakeEnvironment(observation_space=observation_space)
|
|
wrapped_env = FlattenObservation(env)
|
|
flattened = wrapped_env.reset()
|
|
|
|
unflattened = unflatten(env.observation_space, flattened)
|
|
original = env.observation
|
|
|
|
self._check_observations(original, flattened, unflattened, ordered_values)
|
|
|
|
@pytest.mark.parametrize("observation_space, ordered_values", OBSERVATION_SPACES)
|
|
def test_flatten_unflatten(self, observation_space, ordered_values):
|
|
"""
|
|
test flatten and unflatten functions directly
|
|
"""
|
|
original = observation_space.sample()
|
|
|
|
flattened = flatten(observation_space, original)
|
|
unflattened = unflatten(observation_space, flattened)
|
|
|
|
self._check_observations(original, flattened, unflattened, ordered_values)
|
|
|
|
def _check_observations(self, original, flattened, unflattened, ordered_values):
|
|
# make sure that unflatten(flatten(original)) == original
|
|
assert set(unflattened.keys()) == set(original.keys())
|
|
for k, v in original.items():
|
|
np.testing.assert_allclose(unflattened[k], v)
|
|
|
|
if ordered_values:
|
|
# make sure that the values were flattened in the order they appeared in the
|
|
# OrderedDict
|
|
np.testing.assert_allclose(sorted(flattened), flattened)
|