mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
174 lines
6.0 KiB
Python
174 lines
6.0 KiB
Python
import os
|
|
import copy
|
|
import numpy as np
|
|
|
|
import gym
|
|
from gym import error, spaces
|
|
from gym.utils import seeding
|
|
|
|
try:
|
|
import mujoco_py
|
|
except ImportError as e:
|
|
raise error.DependencyNotInstalled(
|
|
"{}. (HINT: you need to install mujoco_py, and also perform the setup instructions here: https://github.com/openai/mujoco-py/.)".format(
|
|
e
|
|
)
|
|
)
|
|
|
|
DEFAULT_SIZE = 500
|
|
|
|
|
|
class RobotEnv(gym.GoalEnv):
|
|
def __init__(self, model_path, initial_qpos, n_actions, n_substeps):
|
|
if model_path.startswith("/"):
|
|
fullpath = model_path
|
|
else:
|
|
fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path)
|
|
if not os.path.exists(fullpath):
|
|
raise IOError("File {} does not exist".format(fullpath))
|
|
|
|
model = mujoco_py.load_model_from_path(fullpath)
|
|
self.sim = mujoco_py.MjSim(model, nsubsteps=n_substeps)
|
|
self.viewer = None
|
|
self._viewers = {}
|
|
|
|
self.metadata = {
|
|
"render.modes": ["human", "rgb_array"],
|
|
"video.frames_per_second": int(np.round(1.0 / self.dt)),
|
|
}
|
|
|
|
self.seed()
|
|
self._env_setup(initial_qpos=initial_qpos)
|
|
self.initial_state = copy.deepcopy(self.sim.get_state())
|
|
|
|
self.goal = self._sample_goal()
|
|
obs = self._get_obs()
|
|
self.action_space = spaces.Box(-1.0, 1.0, shape=(n_actions,), dtype="float32")
|
|
self.observation_space = spaces.Dict(
|
|
dict(
|
|
desired_goal=spaces.Box(-np.inf, np.inf, shape=obs["achieved_goal"].shape, dtype="float32"),
|
|
achieved_goal=spaces.Box(-np.inf, np.inf, shape=obs["achieved_goal"].shape, dtype="float32"),
|
|
observation=spaces.Box(-np.inf, np.inf, shape=obs["observation"].shape, dtype="float32"),
|
|
)
|
|
)
|
|
|
|
@property
|
|
def dt(self):
|
|
return self.sim.model.opt.timestep * self.sim.nsubsteps
|
|
|
|
# Env methods
|
|
# ----------------------------
|
|
|
|
def seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def step(self, action):
|
|
action = np.clip(action, self.action_space.low, self.action_space.high)
|
|
self._set_action(action)
|
|
self.sim.step()
|
|
self._step_callback()
|
|
obs = self._get_obs()
|
|
|
|
done = False
|
|
info = {
|
|
"is_success": self._is_success(obs["achieved_goal"], self.goal),
|
|
}
|
|
reward = self.compute_reward(obs["achieved_goal"], self.goal, info)
|
|
return obs, reward, done, info
|
|
|
|
def reset(self):
|
|
# Attempt to reset the simulator. Since we randomize initial conditions, it
|
|
# is possible to get into a state with numerical issues (e.g. due to penetration or
|
|
# Gimbel lock) or we may not achieve an initial condition (e.g. an object is within the hand).
|
|
# In this case, we just keep randomizing until we eventually achieve a valid initial
|
|
# configuration.
|
|
super(RobotEnv, self).reset()
|
|
did_reset_sim = False
|
|
while not did_reset_sim:
|
|
did_reset_sim = self._reset_sim()
|
|
self.goal = self._sample_goal().copy()
|
|
obs = self._get_obs()
|
|
return obs
|
|
|
|
def close(self):
|
|
if self.viewer is not None:
|
|
# self.viewer.finish()
|
|
self.viewer = None
|
|
self._viewers = {}
|
|
|
|
def render(self, mode="human", width=DEFAULT_SIZE, height=DEFAULT_SIZE):
|
|
self._render_callback()
|
|
if mode == "rgb_array":
|
|
self._get_viewer(mode).render(width, height)
|
|
# window size used for old mujoco-py:
|
|
data = self._get_viewer(mode).read_pixels(width, height, depth=False)
|
|
# original image is upside-down, so flip it
|
|
return data[::-1, :, :]
|
|
elif mode == "human":
|
|
self._get_viewer(mode).render()
|
|
|
|
def _get_viewer(self, mode):
|
|
self.viewer = self._viewers.get(mode)
|
|
if self.viewer is None:
|
|
if mode == "human":
|
|
self.viewer = mujoco_py.MjViewer(self.sim)
|
|
elif mode == "rgb_array":
|
|
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, device_id=-1)
|
|
self._viewer_setup()
|
|
self._viewers[mode] = self.viewer
|
|
return self.viewer
|
|
|
|
# Extension methods
|
|
# ----------------------------
|
|
|
|
def _reset_sim(self):
|
|
"""Resets a simulation and indicates whether or not it was successful.
|
|
If a reset was unsuccessful (e.g. if a randomized state caused an error in the
|
|
simulation), this method should indicate such a failure by returning False.
|
|
In such a case, this method will be called again to attempt a the reset again.
|
|
"""
|
|
self.sim.set_state(self.initial_state)
|
|
self.sim.forward()
|
|
return True
|
|
|
|
def _get_obs(self):
|
|
"""Returns the observation."""
|
|
raise NotImplementedError()
|
|
|
|
def _set_action(self, action):
|
|
"""Applies the given action to the simulation."""
|
|
raise NotImplementedError()
|
|
|
|
def _is_success(self, achieved_goal, desired_goal):
|
|
"""Indicates whether or not the achieved goal successfully achieved the desired goal."""
|
|
raise NotImplementedError()
|
|
|
|
def _sample_goal(self):
|
|
"""Samples a new goal and returns it."""
|
|
raise NotImplementedError()
|
|
|
|
def _env_setup(self, initial_qpos):
|
|
"""Initial configuration of the environment. Can be used to configure initial state
|
|
and extract information from the simulation.
|
|
"""
|
|
pass
|
|
|
|
def _viewer_setup(self):
|
|
"""Initial configuration of the viewer. Can be used to set the camera position,
|
|
for example.
|
|
"""
|
|
pass
|
|
|
|
def _render_callback(self):
|
|
"""A custom callback that is called before rendering. Can be used
|
|
to implement custom visualizations.
|
|
"""
|
|
pass
|
|
|
|
def _step_callback(self):
|
|
"""A custom callback that is called after stepping the simulation. Can be used
|
|
to enforce additional constraints on the simulation state.
|
|
"""
|
|
pass
|