mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
268 lines
9.1 KiB
Python
268 lines
9.1 KiB
Python
from collections import OrderedDict
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Tuple, utils
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["space", "flatdim"],
|
|
[
|
|
(Discrete(3), 3),
|
|
(Box(low=0.0, high=np.inf, shape=(2, 2)), 4),
|
|
(Tuple([Discrete(5), Discrete(10)]), 15),
|
|
(
|
|
Tuple(
|
|
[
|
|
Discrete(5),
|
|
Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
]
|
|
),
|
|
7,
|
|
),
|
|
(Tuple((Discrete(5), Discrete(2), Discrete(2))), 9),
|
|
(MultiDiscrete([2, 2, 100]), 3),
|
|
(MultiBinary(10), 10),
|
|
(
|
|
Dict(
|
|
{
|
|
"position": Discrete(5),
|
|
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
}
|
|
),
|
|
7,
|
|
),
|
|
],
|
|
)
|
|
def test_flatdim(space, flatdim):
|
|
dim = utils.flatdim(space)
|
|
assert dim == flatdim, "Expected {} to equal {}".format(dim, flatdim)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"space",
|
|
[
|
|
Discrete(3),
|
|
Box(low=0.0, high=np.inf, shape=(2, 2)),
|
|
Tuple([Discrete(5), Discrete(10)]),
|
|
Tuple(
|
|
[
|
|
Discrete(5),
|
|
Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
]
|
|
),
|
|
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
|
MultiDiscrete([2, 2, 100]),
|
|
MultiBinary(10),
|
|
Dict(
|
|
{
|
|
"position": Discrete(5),
|
|
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
}
|
|
),
|
|
],
|
|
)
|
|
def test_flatten_space_boxes(space):
|
|
flat_space = utils.flatten_space(space)
|
|
assert isinstance(flat_space, Box), "Expected {} to equal {}".format(type(flat_space), Box)
|
|
flatdim = utils.flatdim(space)
|
|
(single_dim,) = flat_space.shape
|
|
assert single_dim == flatdim, "Expected {} to equal {}".format(single_dim, flatdim)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"space",
|
|
[
|
|
Discrete(3),
|
|
Box(low=0.0, high=np.inf, shape=(2, 2)),
|
|
Tuple([Discrete(5), Discrete(10)]),
|
|
Tuple(
|
|
[
|
|
Discrete(5),
|
|
Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
]
|
|
),
|
|
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
|
MultiDiscrete([2, 2, 100]),
|
|
MultiBinary(10),
|
|
Dict(
|
|
{
|
|
"position": Discrete(5),
|
|
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
}
|
|
),
|
|
],
|
|
)
|
|
def test_flat_space_contains_flat_points(space):
|
|
some_samples = [space.sample() for _ in range(10)]
|
|
flattened_samples = [utils.flatten(space, sample) for sample in some_samples]
|
|
flat_space = utils.flatten_space(space)
|
|
for i, flat_sample in enumerate(flattened_samples):
|
|
assert flat_sample in flat_space, "Expected sample #{} {} to be in {}".format(i, flat_sample, flat_space)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"space",
|
|
[
|
|
Discrete(3),
|
|
Box(low=0.0, high=np.inf, shape=(2, 2)),
|
|
Tuple([Discrete(5), Discrete(10)]),
|
|
Tuple(
|
|
[
|
|
Discrete(5),
|
|
Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
]
|
|
),
|
|
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
|
MultiDiscrete([2, 2, 100]),
|
|
MultiBinary(10),
|
|
Dict(
|
|
{
|
|
"position": Discrete(5),
|
|
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
}
|
|
),
|
|
],
|
|
)
|
|
def test_flatten_dim(space):
|
|
sample = utils.flatten(space, space.sample())
|
|
(single_dim,) = sample.shape
|
|
flatdim = utils.flatdim(space)
|
|
assert single_dim == flatdim, "Expected {} to equal {}".format(single_dim, flatdim)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"space",
|
|
[
|
|
Discrete(3),
|
|
Box(low=0.0, high=np.inf, shape=(2, 2)),
|
|
Tuple([Discrete(5), Discrete(10)]),
|
|
Tuple(
|
|
[
|
|
Discrete(5),
|
|
Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
]
|
|
),
|
|
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
|
MultiDiscrete([2, 2, 100]),
|
|
MultiBinary(10),
|
|
Dict(
|
|
{
|
|
"position": Discrete(5),
|
|
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
}
|
|
),
|
|
],
|
|
)
|
|
def test_flatten_roundtripping(space):
|
|
some_samples = [space.sample() for _ in range(10)]
|
|
flattened_samples = [utils.flatten(space, sample) for sample in some_samples]
|
|
roundtripped_samples = [utils.unflatten(space, sample) for sample in flattened_samples]
|
|
for i, (original, roundtripped) in enumerate(zip(some_samples, roundtripped_samples)):
|
|
assert compare_nested(original, roundtripped), "Expected sample #{} {} to equal {}".format(i, original, roundtripped)
|
|
|
|
|
|
def compare_nested(left, right):
|
|
if isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
|
|
return np.allclose(left, right)
|
|
elif isinstance(left, OrderedDict) and isinstance(right, OrderedDict):
|
|
res = len(left) == len(right)
|
|
for ((left_key, left_value), (right_key, right_value)) in zip(left.items(), right.items()):
|
|
if not res:
|
|
return False
|
|
res = left_key == right_key and compare_nested(left_value, right_value)
|
|
return res
|
|
elif isinstance(left, (tuple, list)) and isinstance(right, (tuple, list)):
|
|
res = len(left) == len(right)
|
|
for (x, y) in zip(left, right):
|
|
if not res:
|
|
return False
|
|
res = compare_nested(x, y)
|
|
return res
|
|
else:
|
|
return left == right
|
|
|
|
|
|
"""
|
|
Expecteded flattened types are based off:
|
|
1. The type that the space is hardcoded as(ie. multi_discrete=np.int64, discrete=np.int64, multi_binary=np.int8)
|
|
2. The type that the space is instantiated with(ie. box=np.float32 by default unless instantiated with a different type)
|
|
3. The smallest type that the composite space(tuple, dict) can be represented as. In flatten, this is determined
|
|
internally by numpy when np.concatenate is called.
|
|
"""
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["original_space", "expected_flattened_dtype"],
|
|
[
|
|
(Discrete(3), np.int64),
|
|
(Box(low=0.0, high=np.inf, shape=(2, 2)), np.float32),
|
|
(Box(low=0.0, high=np.inf, shape=(2, 2), dtype=np.float16), np.float16),
|
|
(Tuple([Discrete(5), Discrete(10)]), np.int64),
|
|
(
|
|
Tuple(
|
|
[
|
|
Discrete(5),
|
|
Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32),
|
|
]
|
|
),
|
|
np.float64,
|
|
),
|
|
(Tuple((Discrete(5), Discrete(2), Discrete(2))), np.int64),
|
|
(MultiDiscrete([2, 2, 100]), np.int64),
|
|
(MultiBinary(10), np.int8),
|
|
(
|
|
Dict(
|
|
{
|
|
"position": Discrete(5),
|
|
"velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float16),
|
|
}
|
|
),
|
|
np.float64,
|
|
),
|
|
],
|
|
)
|
|
def test_dtypes(original_space, expected_flattened_dtype):
|
|
flattened_space = utils.flatten_space(original_space)
|
|
|
|
original_sample = original_space.sample()
|
|
flattened_sample = utils.flatten(original_space, original_sample)
|
|
unflattened_sample = utils.unflatten(original_space, flattened_sample)
|
|
|
|
assert flattened_space.contains(flattened_sample), "Expected flattened_space to contain flattened_sample"
|
|
assert flattened_space.dtype == expected_flattened_dtype, "Expected flattened_space's dtype to equal " "{}".format(
|
|
expected_flattened_dtype
|
|
)
|
|
|
|
assert flattened_sample.dtype == flattened_space.dtype, (
|
|
"Expected flattened_space's dtype to equal " "flattened_sample's dtype "
|
|
)
|
|
|
|
compare_sample_types(original_space, original_sample, unflattened_sample)
|
|
|
|
|
|
def compare_sample_types(original_space, original_sample, unflattened_sample):
|
|
if isinstance(original_space, Discrete):
|
|
assert isinstance(
|
|
unflattened_sample, int
|
|
), "Expected unflattened_sample to be an int. unflattened_sample: " "{} original_sample: {}".format(
|
|
unflattened_sample, original_sample
|
|
)
|
|
elif isinstance(original_space, Tuple):
|
|
for index in range(len(original_space)):
|
|
compare_sample_types(
|
|
original_space.spaces[index],
|
|
original_sample[index],
|
|
unflattened_sample[index],
|
|
)
|
|
elif isinstance(original_space, Dict):
|
|
for key, space in original_space.spaces.items():
|
|
compare_sample_types(space, original_sample[key], unflattened_sample[key])
|
|
else:
|
|
assert unflattened_sample.dtype == original_sample.dtype, (
|
|
"Expected unflattened_sample's dtype to equal "
|
|
"original_sample's dtype. unflattened_sample: "
|
|
"{} original_sample: {}".format(unflattened_sample, original_sample)
|
|
)
|