Files
Gymnasium/gymnasium/experimental/wrappers/numpy_to_torch.py
2022-12-10 22:04:14 +00:00

159 lines
5.4 KiB
Python

"""Helper functions and wrapper class for converting between PyTorch and NumPy."""
from __future__ import annotations
import functools
import numbers
from collections import abc
from typing import Any, Iterable, Mapping, SupportsFloat, Union
import numpy as np
from gymnasium import Env, Wrapper
from gymnasium.core import WrapperActType, WrapperObsType
from gymnasium.error import DependencyNotInstalled
try:
import torch
Device = Union[str, torch.device]
except ImportError:
torch, Device = None, None
@functools.singledispatch
def torch_to_numpy(value: Any) -> Any:
"""Converts a PyTorch Tensor into a NumPy Array."""
if torch is None:
raise DependencyNotInstalled(
"Torch is not installed therefore cannot call `torch_to_numpy`, run `pip install torch`"
)
else:
raise Exception(
f"No known conversion for Torch type ({type(value)}) to NumPy registered. Report as issue on github."
)
if torch is not None:
@torch_to_numpy.register(numbers.Number)
@torch_to_numpy.register(torch.Tensor)
def _number_torch_to_numpy(value: numbers.Number | torch.Tensor) -> Any:
"""Convert a python number (int, float, complex) and torch.Tensor to a numpy array."""
return np.array(value)
@torch_to_numpy.register(abc.Mapping)
def _mapping_torch_to_numpy(value: Mapping[str, Any]) -> Mapping[str, Any]:
"""Converts a mapping of PyTorch Tensors into a Dictionary of Jax DeviceArrays."""
return type(value)(**{k: torch_to_numpy(v) for k, v in value.items()})
@torch_to_numpy.register(abc.Iterable)
def _iterable_torch_to_numpy(value: Iterable[Any]) -> Iterable[Any]:
"""Converts an Iterable from PyTorch Tensors to an iterable of Jax DeviceArrays."""
return type(value)(torch_to_numpy(v) for v in value)
@functools.singledispatch
def numpy_to_torch(value: Any, device: Device | None = None) -> Any:
"""Converts a Jax DeviceArray into a PyTorch Tensor."""
if torch is None:
raise DependencyNotInstalled(
"Torch is not installed therefore cannot call `numpy_to_torch`, run `pip install torch`"
)
else:
raise Exception(
f"No known conversion for NumPy type ({type(value)}) to PyTorch registered. Report as issue on github."
)
if torch is not None:
@numpy_to_torch.register(np.ndarray)
def _numpy_to_torch(
value: np.ndarray, device: Device | None = None
) -> torch.Tensor:
"""Converts a Jax DeviceArray into a PyTorch Tensor."""
assert torch is not None
tensor = torch.tensor(value)
if device:
return tensor.to(device=device)
return tensor
@numpy_to_torch.register(abc.Mapping)
def _numpy_mapping_to_torch(
value: Mapping[str, Any], device: Device | None = None
) -> Mapping[str, Any]:
"""Converts a mapping of Jax DeviceArrays into a Dictionary of PyTorch Tensors."""
return type(value)(**{k: numpy_to_torch(v, device) for k, v in value.items()})
@numpy_to_torch.register(abc.Iterable)
def _numpy_iterable_to_torch(
value: Iterable[Any], device: Device | None = None
) -> Iterable[Any]:
"""Converts an Iterable from Jax DeviceArrays to an iterable of PyTorch Tensors."""
return type(value)(numpy_to_torch(v, device) for v in value)
class NumpyToTorchV0(Wrapper):
"""Wraps a numpy-based environment so that it can be interacted with through PyTorch Tensors.
Actions must be provided as PyTorch Tensors and observations will be returned as PyTorch Tensors.
Note:
For ``rendered`` this is returned as a NumPy array not a pytorch Tensor.
"""
def __init__(self, env: Env, device: Device | None = None):
"""Wrapper class to change inputs and outputs of environment to PyTorch tensors.
Args:
env: The Jax-based environment to wrap
device: The device the torch Tensors should be moved to
"""
if torch is None:
raise DependencyNotInstalled(
"Torch is not installed, run `pip install torch`"
)
super().__init__(env)
self.device: Device | None = device
def step(
self, action: WrapperActType
) -> tuple[WrapperObsType, SupportsFloat, bool, bool, dict]:
"""Performs the given action within the environment.
Args:
action: The action to perform as a PyTorch Tensor
Returns:
The next observation, reward, termination, truncation, and extra info
"""
jax_action = torch_to_numpy(action)
obs, reward, terminated, truncated, info = self.env.step(jax_action)
return (
numpy_to_torch(obs, self.device),
float(reward),
bool(terminated),
bool(truncated),
numpy_to_torch(info, self.device),
)
def reset(
self, *, seed: int | None = None, options: dict[str, Any] | None = None
) -> tuple[WrapperObsType, dict[str, Any]]:
"""Resets the environment returning PyTorch-based observation and info.
Args:
seed: The seed for resetting the environment
options: The options for resetting the environment, these are converted to jax arrays.
Returns:
PyTorch-based observations and info
"""
if options:
options = torch_to_numpy(options)
return numpy_to_torch(self.env.reset(seed=seed, options=options), self.device)