Files
Gymnasium/gym/envs/mujoco/ant_v3.py
Omar Younis 9acf9cd367 Render API (#2671)
* add pygame GUI for frozen_lake.py env

* add new line at EOF

* pre-commit reformat

* improve graphics

* new images and dynamic window size

* darker tile borders and fix ICC profile

* pre-commit hook

* adjust elf and stool size

* Update frozen_lake.py

* reformat

* fix #2600

* #2600

* add rgb_array support

* reformat

* test render api change on FrozenLake

* add render support for reset on frozenlake

* add clock on pygame render

* new render api for blackjack

* new render api for cliffwalking

* new render api for Env class

* update reset method, lunar and Env

* fix wrapper

* fix reset lunar

* new render api for box2d envs

* new render api for mujoco envs

* fix bug

* new render api for classic control envs

* fix tests

* add render_mode None for CartPole

* new render api for test fake envs

* pre-commit hook

* fix FrozenLake

* fix FrozenLake

* more render_mode to super - frozenlake

* remove kwargs from frozen_lake new

* pre-commit hook

* add deprecated render method

* add backwards compatibility

* fix test

* add _render

* move pygame.init() (avoid pygame dependency on init)

* fix pygame dependencies

* remove collect_render() maintain multi-behaviours .render()

* add type hints

* fix renderer

* don't call .render() with None

* improve docstring

* add single_rgb_array to all envs

* remove None from metadata["render_modes"]

* add type hints to test_env_checkers

* fix lint

* add comments to renderer

* add comments to single_depth_array and single_state_pixels

* reformat

* add deprecation warnings and env.render_mode declaration

* fix lint

* reformat

* fix tests

* add docs

* fix car racing determinism

* remove warning test envs, customizable modes on renderer

* remove commments and add todo for env_checker

* fix car racing

* replace render mode check with assert

* update new mujoco

* reformat

* reformat

* change metaclass definition

* fix tests

* implement mark suggestions (test, docs, sets)

* check_render

Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-07 18:20:56 -04:00

155 lines
4.7 KiB
Python

from typing import Optional
import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
DEFAULT_CAMERA_CONFIG = {
"distance": 4.0,
}
class AntEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(
self,
render_mode: Optional[str] = None,
xml_file="ant.xml",
ctrl_cost_weight=0.5,
contact_cost_weight=5e-4,
healthy_reward=1.0,
terminate_when_unhealthy=True,
healthy_z_range=(0.2, 1.0),
contact_force_range=(-1.0, 1.0),
reset_noise_scale=0.1,
exclude_current_positions_from_observation=True,
):
utils.EzPickle.__init__(**locals())
self._ctrl_cost_weight = ctrl_cost_weight
self._contact_cost_weight = contact_cost_weight
self._healthy_reward = healthy_reward
self._terminate_when_unhealthy = terminate_when_unhealthy
self._healthy_z_range = healthy_z_range
self._contact_force_range = contact_force_range
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation
)
mujoco_env.MujocoEnv.__init__(self, xml_file, 5, mujoco_bindings="mujoco_py")
@property
def healthy_reward(self):
return (
float(self.is_healthy or self._terminate_when_unhealthy)
* self._healthy_reward
)
def control_cost(self, action):
control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
return control_cost
@property
def contact_forces(self):
raw_contact_forces = self.sim.data.cfrc_ext
min_value, max_value = self._contact_force_range
contact_forces = np.clip(raw_contact_forces, min_value, max_value)
return contact_forces
@property
def contact_cost(self):
contact_cost = self._contact_cost_weight * np.sum(
np.square(self.contact_forces)
)
return contact_cost
@property
def is_healthy(self):
state = self.state_vector()
min_z, max_z = self._healthy_z_range
is_healthy = np.isfinite(state).all() and min_z <= state[2] <= max_z
return is_healthy
@property
def done(self):
done = not self.is_healthy if self._terminate_when_unhealthy else False
return done
def step(self, action):
xy_position_before = self.get_body_com("torso")[:2].copy()
self.do_simulation(action, self.frame_skip)
xy_position_after = self.get_body_com("torso")[:2].copy()
xy_velocity = (xy_position_after - xy_position_before) / self.dt
x_velocity, y_velocity = xy_velocity
ctrl_cost = self.control_cost(action)
contact_cost = self.contact_cost
forward_reward = x_velocity
healthy_reward = self.healthy_reward
rewards = forward_reward + healthy_reward
costs = ctrl_cost + contact_cost
self.renderer.render_step()
reward = rewards - costs
done = self.done
observation = self._get_obs()
info = {
"reward_forward": forward_reward,
"reward_ctrl": -ctrl_cost,
"reward_contact": -contact_cost,
"reward_survive": healthy_reward,
"x_position": xy_position_after[0],
"y_position": xy_position_after[1],
"distance_from_origin": np.linalg.norm(xy_position_after, ord=2),
"x_velocity": x_velocity,
"y_velocity": y_velocity,
"forward_reward": forward_reward,
}
return observation, reward, done, info
def _get_obs(self):
position = self.sim.data.qpos.flat.copy()
velocity = self.sim.data.qvel.flat.copy()
contact_force = self.contact_forces.flat.copy()
if self._exclude_current_positions_from_observation:
position = position[2:]
observations = np.concatenate((position, velocity, contact_force))
return observations
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nq
)
qvel = (
self.init_qvel
+ self._reset_noise_scale * self.np_random.standard_normal(self.model.nv)
)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
def viewer_setup(self):
for key, value in DEFAULT_CAMERA_CONFIG.items():
if isinstance(value, np.ndarray):
getattr(self.viewer.cam, key)[:] = value
else:
setattr(self.viewer.cam, key, value)