Files
Gymnasium/gym/envs/mujoco/hopper_v3.py
Omar Younis 9acf9cd367 Render API (#2671)
* add pygame GUI for frozen_lake.py env

* add new line at EOF

* pre-commit reformat

* improve graphics

* new images and dynamic window size

* darker tile borders and fix ICC profile

* pre-commit hook

* adjust elf and stool size

* Update frozen_lake.py

* reformat

* fix #2600

* #2600

* add rgb_array support

* reformat

* test render api change on FrozenLake

* add render support for reset on frozenlake

* add clock on pygame render

* new render api for blackjack

* new render api for cliffwalking

* new render api for Env class

* update reset method, lunar and Env

* fix wrapper

* fix reset lunar

* new render api for box2d envs

* new render api for mujoco envs

* fix bug

* new render api for classic control envs

* fix tests

* add render_mode None for CartPole

* new render api for test fake envs

* pre-commit hook

* fix FrozenLake

* fix FrozenLake

* more render_mode to super - frozenlake

* remove kwargs from frozen_lake new

* pre-commit hook

* add deprecated render method

* add backwards compatibility

* fix test

* add _render

* move pygame.init() (avoid pygame dependency on init)

* fix pygame dependencies

* remove collect_render() maintain multi-behaviours .render()

* add type hints

* fix renderer

* don't call .render() with None

* improve docstring

* add single_rgb_array to all envs

* remove None from metadata["render_modes"]

* add type hints to test_env_checkers

* fix lint

* add comments to renderer

* add comments to single_depth_array and single_state_pixels

* reformat

* add deprecation warnings and env.render_mode declaration

* fix lint

* reformat

* fix tests

* add docs

* fix car racing determinism

* remove warning test envs, customizable modes on renderer

* remove commments and add todo for env_checker

* fix car racing

* replace render mode check with assert

* update new mujoco

* reformat

* reformat

* change metaclass definition

* fix tests

* implement mark suggestions (test, docs, sets)

* check_render

Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-07 18:20:56 -04:00

147 lines
4.3 KiB
Python

__credits__ = ["Rushiv Arora"]
from typing import Optional
import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
DEFAULT_CAMERA_CONFIG = {
"trackbodyid": 2,
"distance": 3.0,
"lookat": np.array((0.0, 0.0, 1.15)),
"elevation": -20.0,
}
class HopperEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(
self,
render_mode: Optional[str] = None,
xml_file="hopper.xml",
forward_reward_weight=1.0,
ctrl_cost_weight=1e-3,
healthy_reward=1.0,
terminate_when_unhealthy=True,
healthy_state_range=(-100.0, 100.0),
healthy_z_range=(0.7, float("inf")),
healthy_angle_range=(-0.2, 0.2),
reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True,
):
utils.EzPickle.__init__(**locals())
self._forward_reward_weight = forward_reward_weight
self._ctrl_cost_weight = ctrl_cost_weight
self._healthy_reward = healthy_reward
self._terminate_when_unhealthy = terminate_when_unhealthy
self._healthy_state_range = healthy_state_range
self._healthy_z_range = healthy_z_range
self._healthy_angle_range = healthy_angle_range
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation
)
mujoco_env.MujocoEnv.__init__(
self, xml_file, 4, render_mode=render_mode, mujoco_bindings="mujoco_py"
)
@property
def healthy_reward(self):
return (
float(self.is_healthy or self._terminate_when_unhealthy)
* self._healthy_reward
)
def control_cost(self, action):
control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
return control_cost
@property
def is_healthy(self):
z, angle = self.sim.data.qpos[1:3]
state = self.state_vector()[2:]
min_state, max_state = self._healthy_state_range
min_z, max_z = self._healthy_z_range
min_angle, max_angle = self._healthy_angle_range
healthy_state = np.all(np.logical_and(min_state < state, state < max_state))
healthy_z = min_z < z < max_z
healthy_angle = min_angle < angle < max_angle
is_healthy = all((healthy_state, healthy_z, healthy_angle))
return is_healthy
@property
def done(self):
done = not self.is_healthy if self._terminate_when_unhealthy else False
return done
def _get_obs(self):
position = self.sim.data.qpos.flat.copy()
velocity = np.clip(self.sim.data.qvel.flat.copy(), -10, 10)
if self._exclude_current_positions_from_observation:
position = position[1:]
observation = np.concatenate((position, velocity)).ravel()
return observation
def step(self, action):
x_position_before = self.sim.data.qpos[0]
self.do_simulation(action, self.frame_skip)
x_position_after = self.sim.data.qpos[0]
x_velocity = (x_position_after - x_position_before) / self.dt
ctrl_cost = self.control_cost(action)
forward_reward = self._forward_reward_weight * x_velocity
healthy_reward = self.healthy_reward
rewards = forward_reward + healthy_reward
costs = ctrl_cost
self.renderer.render_step()
observation = self._get_obs()
reward = rewards - costs
done = self.done
info = {
"x_position": x_position_after,
"x_velocity": x_velocity,
}
return observation, reward, done, info
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nq
)
qvel = self.init_qvel + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nv
)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
def viewer_setup(self):
for key, value in DEFAULT_CAMERA_CONFIG.items():
if isinstance(value, np.ndarray):
getattr(self.viewer.cam, key)[:] = value
else:
setattr(self.viewer.cam, key, value)