mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-04 15:05:10 +00:00
* Type cast for `spaces.Dict` * Type cast for `spaces.Tuple` * Type cast for `spaces.Discrete` * Type cast for `spaces.MultiDiscrete` * Type cast for `spaces.MultiBinary`
62 lines
1.6 KiB
Python
62 lines
1.6 KiB
Python
from collections.abc import Sequence
|
|
import numpy as np
|
|
from .space import Space
|
|
|
|
|
|
class MultiBinary(Space):
|
|
"""
|
|
An n-shape binary space.
|
|
|
|
The argument to MultiBinary defines n, which could be a number or a `list` of numbers.
|
|
|
|
Example Usage:
|
|
|
|
>> self.observation_space = spaces.MultiBinary(5)
|
|
|
|
>> self.observation_space.sample()
|
|
|
|
array([0, 1, 0, 1, 0], dtype=int8)
|
|
|
|
>> self.observation_space = spaces.MultiBinary([3, 2])
|
|
|
|
>> self.observation_space.sample()
|
|
|
|
array([[0, 0],
|
|
[0, 1],
|
|
[1, 1]], dtype=int8)
|
|
|
|
"""
|
|
|
|
def __init__(self, n, seed=None):
|
|
if isinstance(n, (Sequence, np.ndarray)):
|
|
self.n = input_n = tuple(int(i) for i in n)
|
|
else:
|
|
self.n = n = int(n)
|
|
input_n = (n,)
|
|
|
|
assert (np.asarray(input_n) > 0).all(), "n (counts) have to be positive"
|
|
|
|
super().__init__(input_n, np.int8, seed)
|
|
|
|
def sample(self):
|
|
return self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype)
|
|
|
|
def contains(self, x):
|
|
if isinstance(x, Sequence):
|
|
x = np.array(x) # Promote list to array for contains check
|
|
if self.shape != x.shape:
|
|
return False
|
|
return ((x == 0) | (x == 1)).all()
|
|
|
|
def to_jsonable(self, sample_n):
|
|
return np.array(sample_n).tolist()
|
|
|
|
def from_jsonable(self, sample_n):
|
|
return [np.asarray(sample) for sample in sample_n]
|
|
|
|
def __repr__(self):
|
|
return f"MultiBinary({self.n})"
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, MultiBinary) and self.n == other.n
|