Files
Gymnasium/gym/spaces/multi_binary.py
Xuehai Pan 18c8b988d4 Type cast in spaces families (#2491)
* Type cast for `spaces.Dict`

* Type cast for `spaces.Tuple`

* Type cast for `spaces.Discrete`

* Type cast for `spaces.MultiDiscrete`

* Type cast for `spaces.MultiBinary`
2021-12-16 00:45:37 -05:00

62 lines
1.6 KiB
Python

from collections.abc import Sequence
import numpy as np
from .space import Space
class MultiBinary(Space):
"""
An n-shape binary space.
The argument to MultiBinary defines n, which could be a number or a `list` of numbers.
Example Usage:
>> self.observation_space = spaces.MultiBinary(5)
>> self.observation_space.sample()
array([0, 1, 0, 1, 0], dtype=int8)
>> self.observation_space = spaces.MultiBinary([3, 2])
>> self.observation_space.sample()
array([[0, 0],
[0, 1],
[1, 1]], dtype=int8)
"""
def __init__(self, n, seed=None):
if isinstance(n, (Sequence, np.ndarray)):
self.n = input_n = tuple(int(i) for i in n)
else:
self.n = n = int(n)
input_n = (n,)
assert (np.asarray(input_n) > 0).all(), "n (counts) have to be positive"
super().__init__(input_n, np.int8, seed)
def sample(self):
return self.np_random.integers(low=0, high=2, size=self.n, dtype=self.dtype)
def contains(self, x):
if isinstance(x, Sequence):
x = np.array(x) # Promote list to array for contains check
if self.shape != x.shape:
return False
return ((x == 0) | (x == 1)).all()
def to_jsonable(self, sample_n):
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n):
return [np.asarray(sample) for sample in sample_n]
def __repr__(self):
return f"MultiBinary({self.n})"
def __eq__(self, other):
return isinstance(other, MultiBinary) and self.n == other.n