update
This commit is contained in:
@ -23,6 +23,8 @@
|
||||
|
||||
公开密钥算法总是要基于一个数学上的难题。比如RSA 依据的是:给定两个素数p、q 很容易相乘得到n,而对n进行因式分解却相对困难。那椭圆曲线上有什么难题呢?
|
||||
|
||||

|
||||
|
||||
考虑如下等式:
|
||||
|
||||
K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数]
|
||||
@ -99,3 +101,5 @@ B可以每次都到CA的网站上(或者什么别的官方途径)获得CA的
|
||||
1. [数字签名是什么?](http://www.ruanyifeng.com/blog/2011/08/what_is_a_digital_signature.html)
|
||||
2. [比特币背后的密码学原理](https://www.jianshu.com/p/225ff9439132)
|
||||
3. [《区块链原理设计与应用》第5章:密码学与安全技术](https://github.com/yjjnls/books/blob/master/block%20chain/%E5%8C%BA%E5%9D%97%E9%93%BE%E5%8E%9F%E7%90%86%E3%80%81%E8%AE%BE%E8%AE%A1%E4%B8%8E%E5%BA%94%E7%94%A8.pdf)
|
||||
4. [Secure Hash Algorithms](https://en.wikipedia.org/wiki/Secure_Hash_Algorithms)
|
||||
5. [Digital Signature Algorithm](https://en.wikipedia.org/wiki/Digital_Signature_Algorithm)
|
BIN
Basic/img/blockchain-jesus.png
Normal file
BIN
Basic/img/blockchain-jesus.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 194 KiB |
Reference in New Issue
Block a user