add Recommender Systems section
This commit is contained in:
		
							
								
								
									
										14
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								README.md
									
									
									
									
									
								
							@@ -67,6 +67,7 @@ Inspired by [awesome-php](https://github.com/ziadoz/awesome-php).
 | 
				
			|||||||
    - [Permissions](#permissions)
 | 
					    - [Permissions](#permissions)
 | 
				
			||||||
    - [Processes](#processes)
 | 
					    - [Processes](#processes)
 | 
				
			||||||
    - [Queue](#queue)
 | 
					    - [Queue](#queue)
 | 
				
			||||||
 | 
					    - [Recommender Systems](#recommender-systems)
 | 
				
			||||||
    - [RESTful API](#restful-api)
 | 
					    - [RESTful API](#restful-api)
 | 
				
			||||||
    - [RPC Servers](#rpc-servers)
 | 
					    - [RPC Servers](#rpc-servers)
 | 
				
			||||||
    - [Science](#science)
 | 
					    - [Science](#science)
 | 
				
			||||||
@@ -744,11 +745,10 @@ Inspired by [awesome-php](https://github.com/ziadoz/awesome-php).
 | 
				
			|||||||
*Libraries for Machine Learning. See: [awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning#python).*
 | 
					*Libraries for Machine Learning. See: [awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning#python).*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
* [gensim](https://github.com/RaRe-Technologies/gensim) - Topic Modelling for Humans.
 | 
					* [gensim](https://github.com/RaRe-Technologies/gensim) - Topic Modelling for Humans.
 | 
				
			||||||
* [LightFM](https://github.com/lyst/lightfm) - A Python implementation of a number of popular recommendation algorithms.
 | 
					* [Metrics](https://github.com/dmlc/xgboost) - Machine learning evaluation metrics.
 | 
				
			||||||
* [NuPIC](https://github.com/numenta/nupic) - Numenta Platform for Intelligent Computing.
 | 
					* [NuPIC](https://github.com/numenta/nupic) - Numenta Platform for Intelligent Computing.
 | 
				
			||||||
* [scikit-learn](http://scikit-learn.org/) - The most popular Python library for Machine Learning.
 | 
					* [scikit-learn](http://scikit-learn.org/) - The most popular Python library for Machine Learning.
 | 
				
			||||||
* [Spark ML](http://spark.apache.org/docs/latest/ml-guide.html) - [Apache Spark](http://spark.apache.org/)'s scalable Machine Learning library.
 | 
					* [Spark ML](http://spark.apache.org/docs/latest/ml-guide.html) - [Apache Spark](http://spark.apache.org/)'s scalable Machine Learning library.
 | 
				
			||||||
* [surprise](http://surpriselib.com) - A scikit for building and analyzing recommender systems.
 | 
					 | 
				
			||||||
* [vowpal_porpoise](https://github.com/josephreisinger/vowpal_porpoise) - A lightweight Python wrapper for [Vowpal Wabbit](https://github.com/JohnLangford/vowpal_wabbit/).
 | 
					* [vowpal_porpoise](https://github.com/josephreisinger/vowpal_porpoise) - A lightweight Python wrapper for [Vowpal Wabbit](https://github.com/JohnLangford/vowpal_wabbit/).
 | 
				
			||||||
* [xgboost](https://github.com/dmlc/xgboost) - A scalable, portable, and distributed gradient boosting library.
 | 
					* [xgboost](https://github.com/dmlc/xgboost) - A scalable, portable, and distributed gradient boosting library.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -894,6 +894,16 @@ Inspired by [awesome-php](https://github.com/ziadoz/awesome-php).
 | 
				
			|||||||
* [rq](http://python-rq.org/) - Simple job queues for Python.
 | 
					* [rq](http://python-rq.org/) - Simple job queues for Python.
 | 
				
			||||||
* [simpleq](https://github.com/rdegges/simpleq) - A simple, infinitely scalable, Amazon SQS based queue.
 | 
					* [simpleq](https://github.com/rdegges/simpleq) - A simple, infinitely scalable, Amazon SQS based queue.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Recommender Systems
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					*Libraries for building recommender systems*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* [annoy](https://github.com/spotify/annoy) - Approximate Nearest Neighbors in C++/Python optimized for memory usage.
 | 
				
			||||||
 | 
					* [fastFM](https://github.com/ibayer/fastFM) - A library for Factorization Machines.
 | 
				
			||||||
 | 
					* [implicit](https://github.com/benfred/implicit) - A fast Python implementation of collaborative filtering for implicit datasets.
 | 
				
			||||||
 | 
					* [LightFM](https://github.com/lyst/lightfm) - A Python implementation of a number of popular recommendation algorithms.
 | 
				
			||||||
 | 
					* [surprise](http://surpriselib.com) - A scikit for building and analyzing recommender systems.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## RESTful API
 | 
					## RESTful API
 | 
				
			||||||
 | 
					
 | 
				
			||||||
*Libraries for developing RESTful APIs.*
 | 
					*Libraries for developing RESTful APIs.*
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user