add Recommender Systems section
This commit is contained in:
		
							
								
								
									
										14
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								README.md
									
									
									
									
									
								
							| @@ -67,6 +67,7 @@ Inspired by [awesome-php](https://github.com/ziadoz/awesome-php). | |||||||
|     - [Permissions](#permissions) |     - [Permissions](#permissions) | ||||||
|     - [Processes](#processes) |     - [Processes](#processes) | ||||||
|     - [Queue](#queue) |     - [Queue](#queue) | ||||||
|  |     - [Recommender Systems](#recommender-systems) | ||||||
|     - [RESTful API](#restful-api) |     - [RESTful API](#restful-api) | ||||||
|     - [RPC Servers](#rpc-servers) |     - [RPC Servers](#rpc-servers) | ||||||
|     - [Science](#science) |     - [Science](#science) | ||||||
| @@ -744,11 +745,10 @@ Inspired by [awesome-php](https://github.com/ziadoz/awesome-php). | |||||||
| *Libraries for Machine Learning. See: [awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning#python).* | *Libraries for Machine Learning. See: [awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning#python).* | ||||||
|  |  | ||||||
| * [gensim](https://github.com/RaRe-Technologies/gensim) - Topic Modelling for Humans. | * [gensim](https://github.com/RaRe-Technologies/gensim) - Topic Modelling for Humans. | ||||||
| * [LightFM](https://github.com/lyst/lightfm) - A Python implementation of a number of popular recommendation algorithms. | * [Metrics](https://github.com/dmlc/xgboost) - Machine learning evaluation metrics. | ||||||
| * [NuPIC](https://github.com/numenta/nupic) - Numenta Platform for Intelligent Computing. | * [NuPIC](https://github.com/numenta/nupic) - Numenta Platform for Intelligent Computing. | ||||||
| * [scikit-learn](http://scikit-learn.org/) - The most popular Python library for Machine Learning. | * [scikit-learn](http://scikit-learn.org/) - The most popular Python library for Machine Learning. | ||||||
| * [Spark ML](http://spark.apache.org/docs/latest/ml-guide.html) - [Apache Spark](http://spark.apache.org/)'s scalable Machine Learning library. | * [Spark ML](http://spark.apache.org/docs/latest/ml-guide.html) - [Apache Spark](http://spark.apache.org/)'s scalable Machine Learning library. | ||||||
| * [surprise](http://surpriselib.com) - A scikit for building and analyzing recommender systems. |  | ||||||
| * [vowpal_porpoise](https://github.com/josephreisinger/vowpal_porpoise) - A lightweight Python wrapper for [Vowpal Wabbit](https://github.com/JohnLangford/vowpal_wabbit/). | * [vowpal_porpoise](https://github.com/josephreisinger/vowpal_porpoise) - A lightweight Python wrapper for [Vowpal Wabbit](https://github.com/JohnLangford/vowpal_wabbit/). | ||||||
| * [xgboost](https://github.com/dmlc/xgboost) - A scalable, portable, and distributed gradient boosting library. | * [xgboost](https://github.com/dmlc/xgboost) - A scalable, portable, and distributed gradient boosting library. | ||||||
|  |  | ||||||
| @@ -894,6 +894,16 @@ Inspired by [awesome-php](https://github.com/ziadoz/awesome-php). | |||||||
| * [rq](http://python-rq.org/) - Simple job queues for Python. | * [rq](http://python-rq.org/) - Simple job queues for Python. | ||||||
| * [simpleq](https://github.com/rdegges/simpleq) - A simple, infinitely scalable, Amazon SQS based queue. | * [simpleq](https://github.com/rdegges/simpleq) - A simple, infinitely scalable, Amazon SQS based queue. | ||||||
|  |  | ||||||
|  | ## Recommender Systems | ||||||
|  |  | ||||||
|  | *Libraries for building recommender systems* | ||||||
|  |  | ||||||
|  | * [annoy](https://github.com/spotify/annoy) - Approximate Nearest Neighbors in C++/Python optimized for memory usage. | ||||||
|  | * [fastFM](https://github.com/ibayer/fastFM) - A library for Factorization Machines. | ||||||
|  | * [implicit](https://github.com/benfred/implicit) - A fast Python implementation of collaborative filtering for implicit datasets. | ||||||
|  | * [LightFM](https://github.com/lyst/lightfm) - A Python implementation of a number of popular recommendation algorithms. | ||||||
|  | * [surprise](http://surpriselib.com) - A scikit for building and analyzing recommender systems. | ||||||
|  |  | ||||||
| ## RESTful API | ## RESTful API | ||||||
|  |  | ||||||
| *Libraries for developing RESTful APIs.* | *Libraries for developing RESTful APIs.* | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user