diff --git a/README.md b/README.md index a285912..29f68a9 100644 --- a/README.md +++ b/README.md @@ -80,7 +80,7 @@ python -m baselines.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num_timeste will set entropy coeffient to 0.1, and construct fully connected network with 3 layers with 32 hidden units in each, and create a separate network for value function estimation (so that its parameters are not shared with the policy network, but the structure is the same) See docstrings in [common/models.py](common/models.py) for description of network parameters for each type of model, and -docstring for [baselines/ppo2/ppo2.py/learn()](ppo2/ppo2.py) fir the description of the ppo2 hyperparamters. +docstring for [baselines/ppo2/ppo2.py/learn()](ppo2/ppo2.py) for the description of the ppo2 hyperparamters. ### Example 2. DQN on Atari DQN with Atari is at this point a classics of benchmarks. To run the baselines implementation of DQN on Atari Pong: @@ -95,7 +95,7 @@ Let's imagine you'd like to train ppo2 on Atari Pong, save the model and then l ```bash python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=2e7 --save_path=~/models/pong_20M_ppo2 ``` -This should get to the mean reward per episode about 5k. To load and visualize the model, we'll do the following - load the model, train it for 0 steps, and then visualize: +This should get to the mean reward per episode about 20. To load and visualize the model, we'll do the following - load the model, train it for 0 steps, and then visualize: ```bash python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --load_path=~/models/pong_20M_ppo2 --play ```