merged master
This commit is contained in:
@@ -1,6 +1,11 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from baselines.common import tf_util as U
|
||||
from baselines.common.tests.test_with_mpi import with_mpi
|
||||
try:
|
||||
from mpi4py import MPI
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
class MpiAdamOptimizer(tf.train.AdamOptimizer):
|
||||
"""Adam optimizer that averages gradients across mpi processes."""
|
||||
@@ -13,34 +18,60 @@ class MpiAdamOptimizer(tf.train.AdamOptimizer):
|
||||
flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0)
|
||||
shapes = [v.shape.as_list() for g, v in grads_and_vars]
|
||||
sizes = [int(np.prod(s)) for s in shapes]
|
||||
|
||||
num_tasks = self.comm.Get_size()
|
||||
buf = np.zeros(sum(sizes), np.float32)
|
||||
|
||||
sess = tf.get_default_session()
|
||||
assert sess is not None
|
||||
countholder = [0] # Counts how many times _collect_grads has been called
|
||||
stat = tf.reduce_sum(grads_and_vars[0][1]) # sum of first variable
|
||||
def _collect_grads(flat_grad):
|
||||
def _collect_grads(flat_grad, np_stat):
|
||||
self.comm.Allreduce(flat_grad, buf, op=MPI.SUM)
|
||||
np.divide(buf, float(num_tasks), out=buf)
|
||||
if countholder[0] % 100 == 0:
|
||||
check_synced(sess, self.comm, stat)
|
||||
check_synced(np_stat, self.comm)
|
||||
countholder[0] += 1
|
||||
return buf
|
||||
|
||||
avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32)
|
||||
avg_flat_grad = tf.py_func(_collect_grads, [flat_grad, stat], tf.float32)
|
||||
avg_flat_grad.set_shape(flat_grad.shape)
|
||||
avg_grads = tf.split(avg_flat_grad, sizes, axis=0)
|
||||
avg_grads_and_vars = [(tf.reshape(g, v.shape), v)
|
||||
for g, (_, v) in zip(avg_grads, grads_and_vars)]
|
||||
return avg_grads_and_vars
|
||||
|
||||
def check_synced(sess, comm, tfstat):
|
||||
def check_synced(localval, comm=None):
|
||||
"""
|
||||
Check that 'tfstat' evaluates to the same thing on every MPI worker
|
||||
It's common to forget to initialize your variables to the same values, or
|
||||
(less commonly) if you update them in some other way than adam, to get them out of sync.
|
||||
This function checks that variables on all MPI workers are the same, and raises
|
||||
an AssertionError otherwise
|
||||
|
||||
Arguments:
|
||||
comm: MPI communicator
|
||||
localval: list of local variables (list of variables on current worker to be compared with the other workers)
|
||||
"""
|
||||
localval = sess.run(tfstat)
|
||||
comm = comm or MPI.COMM_WORLD
|
||||
vals = comm.gather(localval)
|
||||
if comm.rank == 0:
|
||||
assert all(val==vals[0] for val in vals[1:])
|
||||
|
||||
|
||||
@with_mpi(timeout=5)
|
||||
def test_nonfreeze():
|
||||
np.random.seed(0)
|
||||
tf.set_random_seed(0)
|
||||
|
||||
a = tf.Variable(np.random.randn(3).astype('float32'))
|
||||
b = tf.Variable(np.random.randn(2,5).astype('float32'))
|
||||
loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))
|
||||
|
||||
stepsize = 1e-2
|
||||
# for some reason the session config with inter_op_parallelism_threads was causing
|
||||
# nested sess.run calls to freeze
|
||||
config = tf.ConfigProto(inter_op_parallelism_threads=1)
|
||||
sess = U.get_session(config=config)
|
||||
update_op = MpiAdamOptimizer(comm=MPI.COMM_WORLD, learning_rate=stepsize).minimize(loss)
|
||||
sess.run(tf.global_variables_initializer())
|
||||
losslist_ref = []
|
||||
for i in range(100):
|
||||
l,_ = sess.run([loss, update_op])
|
||||
print(i, l)
|
||||
losslist_ref.append(l)
|
||||
|
@@ -160,7 +160,6 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
envsperbatch = nenvs // nminibatches
|
||||
envinds = np.arange(nenvs)
|
||||
flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps)
|
||||
envsperbatch = nbatch_train // nsteps
|
||||
for _ in range(noptepochs):
|
||||
np.random.shuffle(envinds)
|
||||
for start in range(0, nenvs, envsperbatch):
|
||||
|
Reference in New Issue
Block a user