Parameter space noise for DQN and DDPG (#75)
* Export param noise * Update documentation * Final finishing touches
This commit is contained in:
committed by
GitHub
parent
df82a15fd3
commit
882251878f
67
baselines/ddpg/noise.py
Normal file
67
baselines/ddpg/noise.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AdaptiveParamNoiseSpec(object):
|
||||
def __init__(self, initial_stddev=0.1, desired_action_stddev=0.1, adoption_coefficient=1.01):
|
||||
self.initial_stddev = initial_stddev
|
||||
self.desired_action_stddev = desired_action_stddev
|
||||
self.adoption_coefficient = adoption_coefficient
|
||||
|
||||
self.current_stddev = initial_stddev
|
||||
|
||||
def adapt(self, distance):
|
||||
if distance > self.desired_action_stddev:
|
||||
# Decrease stddev.
|
||||
self.current_stddev /= self.adoption_coefficient
|
||||
else:
|
||||
# Increase stddev.
|
||||
self.current_stddev *= self.adoption_coefficient
|
||||
|
||||
def get_stats(self):
|
||||
stats = {
|
||||
'param_noise_stddev': self.current_stddev,
|
||||
}
|
||||
return stats
|
||||
|
||||
def __repr__(self):
|
||||
fmt = 'AdaptiveParamNoiseSpec(initial_stddev={}, desired_action_stddev={}, adoption_coefficient={})'
|
||||
return fmt.format(self.initial_stddev, self.desired_action_stddev, self.adoption_coefficient)
|
||||
|
||||
|
||||
class ActionNoise(object):
|
||||
def reset(self):
|
||||
pass
|
||||
|
||||
|
||||
class NormalActionNoise(ActionNoise):
|
||||
def __init__(self, mu, sigma):
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
|
||||
def __call__(self):
|
||||
return np.random.normal(self.mu, self.sigma)
|
||||
|
||||
def __repr__(self):
|
||||
return 'NormalActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
|
||||
|
||||
|
||||
# Based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
|
||||
class OrnsteinUhlenbeckActionNoise(ActionNoise):
|
||||
def __init__(self, mu, sigma, theta=.15, dt=1e-2, x0=None):
|
||||
self.theta = theta
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
self.dt = dt
|
||||
self.x0 = x0
|
||||
self.reset()
|
||||
|
||||
def __call__(self):
|
||||
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
|
||||
self.x_prev = x
|
||||
return x
|
||||
|
||||
def reset(self):
|
||||
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
|
||||
|
||||
def __repr__(self):
|
||||
return 'OrnsteinUhlenbeckActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
|
Reference in New Issue
Block a user