refactor common.models via registering reflection (#565)
This commit is contained in:
@@ -5,6 +5,13 @@ from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch
|
||||
from baselines.common.mpi_running_mean_std import RunningMeanStd
|
||||
import tensorflow.contrib.layers as layers
|
||||
|
||||
mapping = {}
|
||||
|
||||
def register(name):
|
||||
def _thunk(func):
|
||||
mapping[name] = func
|
||||
return func
|
||||
return _thunk
|
||||
|
||||
def nature_cnn(unscaled_images, **conv_kwargs):
|
||||
"""
|
||||
@@ -20,6 +27,7 @@ def nature_cnn(unscaled_images, **conv_kwargs):
|
||||
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
|
||||
|
||||
|
||||
@register("mlp")
|
||||
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh):
|
||||
"""
|
||||
Stack of fully-connected layers to be used in a policy / q-function approximator
|
||||
@@ -47,11 +55,14 @@ def mlp(num_layers=2, num_hidden=64, activation=tf.tanh):
|
||||
return network_fn
|
||||
|
||||
|
||||
@register("cnn")
|
||||
def cnn(**conv_kwargs):
|
||||
def network_fn(X):
|
||||
return nature_cnn(X, **conv_kwargs), None
|
||||
return network_fn
|
||||
|
||||
|
||||
@register("cnn_small")
|
||||
def cnn_small(**conv_kwargs):
|
||||
def network_fn(X):
|
||||
h = tf.cast(X, tf.float32) / 255.
|
||||
@@ -65,7 +76,7 @@ def cnn_small(**conv_kwargs):
|
||||
return network_fn
|
||||
|
||||
|
||||
|
||||
@register("lstm")
|
||||
def lstm(nlstm=128, layer_norm=False):
|
||||
"""
|
||||
Builds LSTM (Long-Short Term Memory) network to be used in a policy.
|
||||
@@ -120,6 +131,7 @@ def lstm(nlstm=128, layer_norm=False):
|
||||
return network_fn
|
||||
|
||||
|
||||
@register("cnn_lstm")
|
||||
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
|
||||
def network_fn(X, nenv=1):
|
||||
nbatch = X.shape[0]
|
||||
@@ -145,10 +157,13 @@ def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
|
||||
|
||||
return network_fn
|
||||
|
||||
|
||||
@register("cnn_lnlstm")
|
||||
def cnn_lnlstm(nlstm=128, **conv_kwargs):
|
||||
return cnn_lstm(nlstm, layer_norm=True, **conv_kwargs)
|
||||
|
||||
|
||||
@register("conv_only")
|
||||
def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs):
|
||||
'''
|
||||
convolutions-only net
|
||||
@@ -185,20 +200,19 @@ def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]):
|
||||
|
||||
|
||||
def get_network_builder(name):
|
||||
# TODO: replace with reflection?
|
||||
if name == 'cnn':
|
||||
return cnn
|
||||
elif name == 'cnn_small':
|
||||
return cnn_small
|
||||
elif name == 'conv_only':
|
||||
return conv_only
|
||||
elif name == 'mlp':
|
||||
return mlp
|
||||
elif name == 'lstm':
|
||||
return lstm
|
||||
elif name == 'cnn_lstm':
|
||||
return cnn_lstm
|
||||
elif name == 'cnn_lnlstm':
|
||||
return cnn_lnlstm
|
||||
"""
|
||||
If you want to register your own network outside models.py, you just need:
|
||||
|
||||
Usage Example:
|
||||
-------------
|
||||
from baselines.common.models import register
|
||||
@register("your_network_name")
|
||||
def your_network_define(**net_kwargs):
|
||||
...
|
||||
return network_fn
|
||||
|
||||
"""
|
||||
if name in mapping:
|
||||
return mapping[name]
|
||||
else:
|
||||
raise ValueError('Unknown network type: {}'.format(name))
|
||||
|
Reference in New Issue
Block a user