export: fix accidental rename
This commit is contained in:
@@ -243,7 +243,7 @@ class Runner(object):
|
|||||||
mb_mus.append(mus)
|
mb_mus.append(mus)
|
||||||
mb_dones.append(self.dones)
|
mb_dones.append(self.dones)
|
||||||
obs, rewards, dones, _ = self.env.step(actions)
|
obs, rewards, dones, _ = self.env.step(actions)
|
||||||
# states information for statefull predictors like LSTM
|
# states information for statefull models like LSTM
|
||||||
self.states = states
|
self.states = states
|
||||||
self.dones = dones
|
self.dones = dones
|
||||||
self.update_obs(obs, dones)
|
self.update_obs(obs, dones)
|
||||||
@@ -260,7 +260,7 @@ class Runner(object):
|
|||||||
|
|
||||||
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
|
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
|
||||||
|
|
||||||
mb_masks = mb_dones # Used for statefull predictors like LSTM's to mask state when done
|
mb_masks = mb_dones # Used for statefull models like LSTM's to mask state when done
|
||||||
mb_dones = mb_dones[:, 1:] # Used for calculating returns. The dones array is now aligned with rewards
|
mb_dones = mb_dones[:, 1:] # Used for calculating returns. The dones array is now aligned with rewards
|
||||||
|
|
||||||
# shapes are now [nenv, nsteps, []]
|
# shapes are now [nenv, nsteps, []]
|
||||||
|
@@ -134,7 +134,7 @@ class KfacOptimizer():
|
|||||||
# check associated weights and bias for homogeneous coordinate representation
|
# check associated weights and bias for homogeneous coordinate representation
|
||||||
# and check redundent factors
|
# and check redundent factors
|
||||||
# TO-DO: there may be a bug to detect associate bias and weights for
|
# TO-DO: there may be a bug to detect associate bias and weights for
|
||||||
# forking layer, e.g. in inception predictors.
|
# forking layer, e.g. in inception models.
|
||||||
for param in varlist:
|
for param in varlist:
|
||||||
factorTensors[param]['assnWeights'] = None
|
factorTensors[param]['assnWeights'] = None
|
||||||
factorTensors[param]['assnBias'] = None
|
factorTensors[param]['assnBias'] = None
|
||||||
|
Reference in New Issue
Block a user