match network output with action distribution via a linear layer only if necessary (#167)
This commit is contained in:
@@ -62,7 +62,7 @@ class CategoricalPdType(PdType):
|
|||||||
def pdclass(self):
|
def pdclass(self):
|
||||||
return CategoricalPd
|
return CategoricalPd
|
||||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||||
pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
pdparam = _matching_fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
||||||
return self.pdfromflat(pdparam), pdparam
|
return self.pdfromflat(pdparam), pdparam
|
||||||
|
|
||||||
def param_shape(self):
|
def param_shape(self):
|
||||||
@@ -82,7 +82,7 @@ class MultiCategoricalPdType(PdType):
|
|||||||
return MultiCategoricalPd(self.ncats, flat)
|
return MultiCategoricalPd(self.ncats, flat)
|
||||||
|
|
||||||
def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0):
|
def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0):
|
||||||
pdparam = fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
|
pdparam = _matching_fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
|
||||||
return self.pdfromflat(pdparam), pdparam
|
return self.pdfromflat(pdparam), pdparam
|
||||||
|
|
||||||
def param_shape(self):
|
def param_shape(self):
|
||||||
@@ -99,7 +99,7 @@ class DiagGaussianPdType(PdType):
|
|||||||
return DiagGaussianPd
|
return DiagGaussianPd
|
||||||
|
|
||||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||||
mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
mean = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||||
logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
|
logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
|
||||||
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
||||||
return self.pdfromflat(pdparam), mean
|
return self.pdfromflat(pdparam), mean
|
||||||
@@ -123,7 +123,7 @@ class BernoulliPdType(PdType):
|
|||||||
def sample_dtype(self):
|
def sample_dtype(self):
|
||||||
return tf.int32
|
return tf.int32
|
||||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||||
pdparam = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
pdparam = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||||
return self.pdfromflat(pdparam), pdparam
|
return self.pdfromflat(pdparam), pdparam
|
||||||
|
|
||||||
# WRONG SECOND DERIVATIVES
|
# WRONG SECOND DERIVATIVES
|
||||||
@@ -345,3 +345,9 @@ def validate_probtype(probtype, pdparam):
|
|||||||
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
|
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
|
||||||
print('ok on', probtype, pdparam)
|
print('ok on', probtype, pdparam)
|
||||||
|
|
||||||
|
|
||||||
|
def _matching_fc(tensor, name, size, init_scale, init_bias):
|
||||||
|
if tensor.shape[-1] == size:
|
||||||
|
return tensor
|
||||||
|
else:
|
||||||
|
return fc(tensor, name, size, init_scale=init_scale, init_bias=init_bias)
|
||||||
|
Reference in New Issue
Block a user