match network output with action distribution via a linear layer only if necessary (#167)
This commit is contained in:
@@ -62,7 +62,7 @@ class CategoricalPdType(PdType):
|
||||
def pdclass(self):
|
||||
return CategoricalPd
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
||||
pdparam = _matching_fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
||||
return self.pdfromflat(pdparam), pdparam
|
||||
|
||||
def param_shape(self):
|
||||
@@ -82,7 +82,7 @@ class MultiCategoricalPdType(PdType):
|
||||
return MultiCategoricalPd(self.ncats, flat)
|
||||
|
||||
def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0):
|
||||
pdparam = fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
|
||||
pdparam = _matching_fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
|
||||
return self.pdfromflat(pdparam), pdparam
|
||||
|
||||
def param_shape(self):
|
||||
@@ -99,7 +99,7 @@ class DiagGaussianPdType(PdType):
|
||||
return DiagGaussianPd
|
||||
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
mean = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
|
||||
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
||||
return self.pdfromflat(pdparam), mean
|
||||
@@ -123,7 +123,7 @@ class BernoulliPdType(PdType):
|
||||
def sample_dtype(self):
|
||||
return tf.int32
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
pdparam = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
pdparam = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
return self.pdfromflat(pdparam), pdparam
|
||||
|
||||
# WRONG SECOND DERIVATIVES
|
||||
@@ -345,3 +345,9 @@ def validate_probtype(probtype, pdparam):
|
||||
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
|
||||
print('ok on', probtype, pdparam)
|
||||
|
||||
|
||||
def _matching_fc(tensor, name, size, init_scale, init_bias):
|
||||
if tensor.shape[-1] == size:
|
||||
return tensor
|
||||
else:
|
||||
return fc(tensor, name, size, init_scale=init_scale, init_bias=init_bias)
|
||||
|
Reference in New Issue
Block a user